Statistical methods for materials science : the data science of microstructure characterization
著者
書誌事項
Statistical methods for materials science : the data science of microstructure characterization
CRC Press, c2019
- : hardback
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 445-500) and index
内容説明・目次
内容説明
Data analytics has become an integral part of materials science. This book provides the practical tools and fundamentals needed for researchers in materials science to understand how to analyze large datasets using statistical methods, especially inverse methods applied to microstructure characterization. It contains valuable guidance on essential topics such as denoising and data modeling. Additionally, the analysis and applications section addresses compressed sensing methods, stochastic models, extreme estimation, and approaches to pattern detection.
目次
1 Materials Science vs. Data Science 2 Emerging Digital Data Capabilities 3 Cultural Differences 4 Forward Modeling 5 Inverse Problems and Sensing 6 Model-Based Iterative Reconstruction for Electron Tomography 7 Statistical reconstruction and heterogeneity characterization in 3-D biological macromolecular complexes 8 Object Tracking through Image Sequences 9 Grain Boundary Characteristics 10 Interface Science and the Formation of Structure 11 Hierarchical Assembled Structures from Nanoparticles 12 Estimating Orientation Statistics 13 Representation of Stochastic Microstructures 14 Computer Vision for Microstructure Representation 15 Topological Analysis of Local Structure 16 Markov Random Fields for Microstructure Simulation 17 Distance Measures for Microstructures 18 Industrial Applications 19 Anomaly Testing 20 Anomalies in Microstructures 21 Denoising Methods with Applications to Microscopy 22 Compressed Sensing for Imaging Applications 23 Dictionary Methods for Compressed Sensing 24 Sparse Sampling in Microscopy
「Nielsen BookData」 より