Surrogates : Gaussian process modeling, design, and optimization for the applied sciences
著者
書誌事項
Surrogates : Gaussian process modeling, design, and optimization for the applied sciences
(Texts in statistical science)(A Chapman & Hall book)
CRC Press, c2020
- : pbk.
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 511-530
Includes index
内容説明・目次
内容説明
Surrogates: a graduate textbook, or professional handbook, on topics at the interface between machine learning, spatial statistics, computer simulation, meta-modeling (i.e., emulation), design of experiments, and optimization. Experimentation through simulation, "human out-of-the-loop" statistical support (focusing on the science), management of dynamic processes, online and real-time analysis, automation, and practical application are at the forefront.
Topics include:
Gaussian process (GP) regression for flexible nonparametric and nonlinear modeling.
Applications to uncertainty quantification, sensitivity analysis, calibration of computer models to field data, sequential design/active learning and (blackbox/Bayesian) optimization under uncertainty.
Advanced topics include treed partitioning, local GP approximation, modeling of simulation experiments (e.g., agent-based models) with coupled nonlinear mean and variance (heteroskedastic) models.
Treatment appreciates historical response surface methodology (RSM) and canonical examples, but emphasizes contemporary methods and implementation in R at modern scale.
Rmarkdown facilitates a fully reproducible tour, complete with motivation from, application to, and illustration with, compelling real-data examples.
Presentation targets numerically competent practitioners in engineering, physical, and biological sciences. Writing is statistical in form, but the subjects are not about statistics. Rather, they're about prediction and synthesis under uncertainty; about visualization and information, design and decision making, computing and clean code.
目次
1 Historical Perspective
2 Four Motivating Datasets
3 Steepest Ascent and Ridge Analysis
4 Space-filling Design
5 Gaussian process regression
6 Model-Based Design for GPs
7 Optimization
8 Calibration and Sensitivity
9 GP Fidelity and Scale
10 Heteroskedasticity
Appendix A Numerical Linear Algebra for Fast GPs
Appendix B An Experiment Game
「Nielsen BookData」 より