An introduction to R and Python for data analysis : a side-by-side approach
著者
書誌事項
An introduction to R and Python for data analysis : a side-by-side approach
(A Chapman & Hall book)
CRC Press, 2023
1st ed
- : hbk
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 241-244) and index
内容説明・目次
内容説明
An Introduction to R and Python for Data Analysis helps teach students to code in both R and Python simultaneously. As both R and Python can be used in similar manners, it is useful and efficient to learn both at the same time, helping lecturers and students to teach and learn more, save time, whilst reinforcing the shared concepts and differences of the systems. This tandem learning is highly useful for students, helping them to become literate in both languages, and develop skills which will be handy after their studies. This book presumes no prior experience with computing, and is intended to be used by students from a variety of backgrounds. The side-by-side formatting of this book helps introductory graduate students quickly grasp the basics of R and Python, with the exercises providing helping them to teach themselves the skills they will need upon the completion of their course, as employers now ask for competency in both R and Python. Teachers and lecturers will also find this book useful in their teaching, providing a singular work to help ensure their students are well trained in both computer languages. All data for exercises can be found here: https://github.com/tbrown122387/r_and_python_book/tree/master/data. Instructors can access the solutions manual via the book's website.
Key features:
- Teaches R and Python in a "side-by-side" way.
- Examples are tailored to aspiring data scientists and statisticians, not software engineers.
- Designed for introductory graduate students.
- Does not assume any mathematical background.
目次
1. Introduction 2. Basic Types 3. R vectors versus Numpy arrays and Pandas' Series 4. Numpy ndarrays Versus R's matrix and array Types 5. R's lists Versus Python's lists and dicts 6. Functions 7. Categorical Data 8. Data Frames Part 1. Introducing the Basics 10. Using Third-Party Code 11. Control Flow 12. Reshaping and Combining Data Sets 13. Visualization Part 2. Common Tasks and Patterns 14. An Introduction to Object-Oriented Programming 15. An Introduction to Functional Programming
「Nielsen BookData」 より