Exploring mathematics with CAS assistance : topics in geometry, algebra, univariate calculus, and probability
著者
書誌事項
Exploring mathematics with CAS assistance : topics in geometry, algebra, univariate calculus, and probability
(Classroom resource materials, v. 69)
MAA Press, an imprint of the American Mathematical Society, c2022
- : pbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Exploring Mathematics with CAS Assistance is designed as a textbook for an innovative mathematics major course in using a computer-algebra system (CAS) to investigate, explore, and apply mathematical ideas and techniques in problem solving. The book is designed modularly with student investigations and projects in number theory, geometry, algebra, single-variable calculus, and probability. The goal is to provoke an inquiry mindset in students and to arm them with the CAS tools to investigate low-entry, open-ended questions in a variety of mathematical arenas. Because of the modular design, the individual chapters could also be used selectively to design student projects in a number of upper-division mathematics courses. These projects could, in fact, lead into undergraduate research projects. The existence of powerful computer-algebra systems has changed the way mathematicians perform research; this book enables instructors to put some of those new methods and approaches into their undergraduate instruction.
Prerequisites include a basic working knowledge of discrete mathematics and single-variable calculus. Programming experience and some basic familiarity with elementary probability and statistics are beneficial but not required. The book takes a software-agnostic approach and emphasizes algorithmic structure of solution methods by systematically providing their step-by-step verbal descriptions or suitable pseudocode that can be implemented in any CAS.
目次
Part 1 Algebra & Geometry: Computer algebra systems and elements of algorithmics
Topics in classical geometry
More topics in classical geometry
Topics in elementary number theory
Topics in algebra: Solving univariate algebraic equations
Topics in algebra: Bivariate systems of polynomial equations
Part 2 Calculus and numerics: Derivatives
Definite integrals
Approximating zeros of functions by iteration methods
Polynomial approximations
Trigonometric approximation
Fourier analysis in music and signal processing
Part 3 Probability and statistics: Probability and statistics basics
Computer simulation of statistical sampling
Simple random walks
Data for lab 17 in chapter 14
Bibliography
Index
「Nielsen BookData」 より