Nonimaging optics : solar and illumination system methods, design, and performance
Author(s)
Bibliographic Information
Nonimaging optics : solar and illumination system methods, design, and performance
(Optical science and engineering)
CRC Press, 2021
- : hbk
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Successor to Nonimaging optics (Academic Press, 2005), by Roland Winston, J. C. Miñano, and P. Benitez, with contributed chapters by N. Shatz and J. Bortz"--Preface
Includes bibliographical references and index
Description and Table of Contents
Description
This book provides a comprehensive look at the science, methods, designs, and limitations of nonimaging optics. It begins with an in-depth discussion on thermodynamically efficient optical designs and how they improve the performance and cost effectiveness of solar concentrating and illumination systems. It then moves into limits to concentration, imaging devices and their limitations, and the theory of furnaces and its applications to optical design. Numerous design methods are discussed in detail followed by chapters of estimating the performance of a nonimaging design and pushing their limits of concentration. Exercises and worked examples are included throughout.
Table of Contents
Nonimaging Optical Systems and Their Uses. Some Basic Ideas in Geometrical Optics. Some Designs of Image-Forming Concentrators. Nonimaging Optical Systems. Developments and Modifications of the Compound Parabolic Concentrator. The Flowline Method for Nonimaging Optical Designs. Freeform Optics and Supporting Quadric Method: Introduction. Supporting Quadric Method (SQM). Variational Approach. A Paradigm for a Wave Description of Optical Measurements. Appendices.
by "Nielsen BookData"