Quantitative methods in linguistics
著者
書誌事項
Quantitative methods in linguistics
Blackwell Publishing, 2008
- : pbk
並立書誌 全1件
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [270]-272) and index
内容説明・目次
内容説明
Quantitative Methods in Linguistics offers a practical introduction to statistics and quantitative analysis with data sets drawn from the field and coverage of phonetics, psycholinguistics, sociolinguistics, historical linguistics, and syntax, as well as probability distribution and quantitative methods.
Provides balanced treatment of the practical aspects of handling quantitative linguistic data
Includes sample datasets contributed by researchers working in a variety of sub-disciplines of linguistics
Uses R, the statistical software package most commonly used by linguists, to discover patterns in quantitative data and to test linguistic hypotheses
Includes student-friendly end-of-chapter assignments and is accompanied by online resources at available in the 'Downloads' section, below
目次
Acknowledgments. Design of the Book.
1. Fundamentals of Quantitative Analysis.
1.1 What We Accomplish in Quantitative Analysis.
1.2 How to Describe an Observation.
1.3 Frequency Distributions: A Fundamental Building Block of Quantitative Analysis.
1.4 Types of Distributions.
1.5 Is Normal Data, Well, Normal?.
1.6 Measures of Central Tendency.
1.7 Measures of Dispersion.
1.8 Standard Deviation of the Normal Distribution.
Exercises.
2. Patterns and Tests.
2.1 Sampling.
2.2 Data.
2.3 Hypothesis Testing.
2.3.1 The Central Limit Theorem.
2.3.2 Score Keeping.
2.3.3 H0: = 100.
2.3.4 Type I and Type II Error.
2.4 Correlation.
2.4.1 Covariance and Correlation.
2.4.2 The Regression Line.
2.4.3 Amount of Variance Accounted For.
Exercises.
3. Phonetics.
3.1 Comparing Mean Values.
3.1.1 Cherokee Voice Onset Time: 1971=2001.
3.1.2 Samples Have Equal Variance.
3.1.3 If the Samples Do Not Have Equal Variance.
3.1.4 Paired t Test: Are Men Different from Women?.
3.1.5 The Sign Test.
3.2 Predicting the Back of the Tongue from the Front: Multiple Regression.
3.2.1 The Covariance Matrix.
3.2.2 More than One slope: The bi.
3.2.3 Selecting a Model.
3.3 Tongue Shape Factors: Principal Components Analysis.
Exercises.
4. Psycholinguistics.
4.1 Analysis of Variance: One Factor, More than Two Levels.
4.2 Two Factors: Interaction.
4.3 Repeated Measures.
4.3.1 An Example of Repeated Measures ANOVA.
4.3.2 Repeated Measures ANOVA with a Between-Subjects Factor.
4.4 The "Language as Fixed Effect" Fallacy.
4.5 Exercises.
5. Sociolinguistics.
5.1 When the Data are Counts - Contingency Tables.
5.1.1 Frequency in a Contingency Table.
5.2 Working with Probabilities: The Binomial Distribution.
5.2.1 Bush or Kerry?.
5.3 An Aside about Maximum Likelihood Estimation.
5.4 Logistic Regression.
5.5 An Example from the [ ]treets of Columbus.
5.5.1 On the Relationship between x2 and G2.
5.5.2 More than One Predictor.
5.6 Logistic Regression as Regression: An Ordinal Effect - Age.
5.7 Varbrul/R Comparison.
Exercises.
6. Historical Linguistics.
6.1 Cladistics: Where Linguistics and Evolutionary Biology Meet.
6.2 Clustering on the Basis of Shared Vocabulary.
6.3 Cladistic Analysis: Combining Character-Based Subtrees.
6.4 Clustering on the Basis of Spelling Similarity.
6.5 Multidimensional Scaling: A Language Similarity Space.
Exercises.
7. Syntax.
7.1 Measuring Sentence Acceptability.
7.2 A Psychogrammatical Law?.
7.3 Linear Mixed Effects in the Syntactic Expression of Agents in English.
7.3.1 Linear Regression: Overall, and Separately by Verbs.
7.3.2 Fitting a Linear Mixed-Effects Model: Fixed and Random Effects.
7.3.3 Fitting Five More Mixed-Effects Models: Finding the Best Model.
7.4 Predicting the Dative Alternation: Logistic Modeling of Syntactic Corpora Data.
7.4.1 Logistic Model of Dative Alternation.
7.4.2 Evaluating the Fit of the Model.
7.4.3 Adding a Random Factor: Mixed Effects Logistic Regression.
Exercises.
Appendix 7A.
References.
Index
「Nielsen BookData」 より