Many-body methods for atoms, molecules and clusters

Author(s)

    • Schirmer, Jochen

Bibliographic Information

Many-body methods for atoms, molecules and clusters

Jochen Schirmer

(Lecture notes in chemistry, v. 94)

Springer, c2018

  • : softcover

Available at  / 1 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

This book provides an introduction to many-body methods for applications in quantum chemistry. These methods, originating in field-theory, offer an alternative to conventional quantum-chemical approaches to the treatment of the many-electron problem in molecules. Starting with a general introduction to the atomic and molecular many-electron problem, the book then develops a stringent formalism of field-theoretical many-body theory, culminating in the diagrammatic perturbation expansions of many-body Green's functions or propagators in terms of Feynman diagrams. It also introduces and analyzes practical computational methods, such as the field-tested algebraic-diagrammatic construction (ADC) schemes. The ADC concept can also be established via a wave-function based procedure, referred to as intermediate state representation (ISR), which bridges the gap between propagator and wave-function formulations. Based on the current rapid increase in computer power and the development of efficient computational methods, quantum chemistry has emerged as a potent theoretical tool for treating ever-larger molecules and problems of chemical and physical interest. Offering an introduction to many-body methods, this book appeals to advanced students interested in an alternative approach to the many-electron problem in molecules, and is suitable for any courses dealing with computational methods in quantum chemistry.

Table of Contents

I. Many-Electron Systems and the Electron Propagator1. Systems of identical particles 2. Second quantization 3. One-particle Green's function II. Formalism of Diagrammatic Perturbation Theory 4. Perturbation theory for the electron propagator 5. Introducing diagrams 6. Feynman diagrams 7. Time-ordered or Goldstone diagramsIII. Approximations and Computational Schemes 8. Self-energy and the Dyson equation 9. Algebraic-diagrammatic construction (ADC) 10. Direct ADC procedure for the electron propagator 11. Intermediate-state representation (ISR) 12. Order relations and separability IV. N-Electron Excitations 13. Polarization propagator 14. ADC and ISR approaches to the polarization propagator 15. Random-phase approximation (RPA) V. A Look at Related Methods 16. Algebraic propagator methods17. Coupled-cluster methods for generalized excitations Appendix A1 Basic tools A2 Proof of the Gell-Mann and Low theorem A3 Proof of Wick's theorem A4 Time-ordered diagrams: derivation of Goldstone rules A5 Dyson expansion method for the static self-energy part A6 Proofs of order relations A7 Linear response theory and the polarization propagator A8 Superoperator approach to the electron propagator A9 Compilation of ADC expressions

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BD02511447
  • ISBN
    • 9783030066918
  • Country Code
    sz
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cham
  • Pages/Volumes
    xii, 332 p.
  • Size
    25 cm
  • Parent Bibliography ID
Page Top