Evolutionary decision trees in large-scale data mining

著者

    • Kretowski, Marek

書誌事項

Evolutionary decision trees in large-scale data mining

Marek Kretowski

(Studies in big data, v. 59)

Springer, c2019

  • : pbk

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

This book presents a unified framework, based on specialized evolutionary algorithms, for the global induction of various types of classification and regression trees from data. The resulting univariate or oblique trees are significantly smaller than those produced by standard top-down methods, an aspect that is critical for the interpretation of mined patterns by domain analysts. The approach presented here is extremely flexible and can easily be adapted to specific data mining applications, e.g. cost-sensitive model trees for financial data or multi-test trees for gene expression data. The global induction can be efficiently applied to large-scale data without the need for extraordinary resources. With a simple GPU-based acceleration, datasets composed of millions of instances can be mined in minutes. In the event that the size of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied.

目次

Evolutionary computation.- Decision trees in data mining.- Parallel and distributed computation.- Global induction of univariate trees.- Oblique and mixed decision trees.- Cost-sensitive tree induction.- Multi-test decision trees for gene expression data.- Parallel computations for evolutionary induction.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ