Software design by example : a tool-based introduction with JavaScript
著者
書誌事項
Software design by example : a tool-based introduction with JavaScript
(A Chapman & Hall book)
CRC Press, 2023
- : pbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
Features
Teaches software design by showing programmers how to build the tools they use every day.
Each chapter includes exercises to help readers check and deepen their understanding.
All the example code can be downloaded, re-used, and modified under an open license.
目次
1. Introduction. 1.1. Who is our audience? 1.2. What tools and ideas do we cover? 1.3. How are these lessons laid out? 1.4. How did we get here? 1.5. How can people use and contribute to this material? 1.6. Who helped us? 2. Systems Programming. 2.1. How can we list a directory? 2.2. What is a callback function? 2.3. What are anonymous functions? 2.4. How can we select a set of files? 2.5. How can we copy a set of files? 2.6. Exercises. 3. Asynchronous Programming. 3.1. How can we manage asynchronous execution? 3.2. How do promises work? 3.3. How can we chain operations together? 3.4. How are real promises different? 3.5. How can we build tools with promises? 3.6. How can we make this more readable? 3.7. How can we handle errors with asynchronous code? 3.8. Exercises. 4. Unit Testing. 4.1. How should we structure unit testing? 4.2. How can we separate registration, execution, and reporting? 4.3. How should we structure test registration? 4.4. How can we build a command-line interface for testing? 4.5. Exercises. 5. File Backup. 5.1. How can we uniquely identify files? 5.2. How can we back up files? 5.3. How can we track which files have already been backed up? 5.4. How can we test code that modifies files? 5.5. Exercises. 6. Data Tables. 6.1. How can we implement data tables? 6.2. How can we test the performance of our implementations? 6.3. What is the most efficient way to save a table? 6.4. Does binary storage improve performance? 6.5. Exercises. 7. Pattern Matching. 7.1. How can we match query selectors? 7.2. How can we implement a simple regular expression matcher? 7.3. How can we implement an extensible matcher? 7.4. Exercises. 8. Parsing Expressions. 8.1. How can we break text into tokens? 8.2. How can we turn a list of tokens into a tree? 8.3. Exercises. 9. Page Templates. 9.1. What will our system look like? 9.2. How can we keep track of values? 9.3. How do we handle nodes? 9.4. How do we implement node handlers? 9.5. How can we implement control flow? 9.6. How did we know how to do all of this? 9.7. Exercises. 10. Build Manager. 10.1. What's in a build manager? 10.2. Where should we start? 10.3. How can we specify that a file is out of date? 10.4. How can we update out-of-date files? 10.5. How can we add generic build rules? 10.6. What should we do next? 10.7. Exercises. 11. Layout Engine. 11.1. How can we size rows and columns? 11.2. How can we position rows and columns? 11.3. How can we render elements? 11.4. How can we wrap elements to fit? 11.5. What subset of CSS will we support? 11.6. Exercises. 12. File Interpolator. 12.1. How can we evaluate JavaScript dynamically? 12.2. How can we manage files? 12.3. How can we find files? 12.4. How can we interpolate pieces of code? 12.5. What did we do instead? 12.6. Exercises. 13. Module Loader. 13.1. How can we implement namespaces? 13.2. How can we load a module? 13.3. Do we need to handle circular dependencies? 13.4. How can a module load another module? 13.5. Exercises. 14. Style Checker. 14.1. How can we parse JavaScript to create an AST? 14.2. How can we find things in an AST? 14.3. How can we apply checks? 14.4. How does the AST walker work? 14.5. How else could the AST walker work? 14.6. What other kinds of analysis can we do? 14.7. Exercises. 15. Code Generator. 15.1. How can we replace a function with another function? 15.2. How can we generate JavaScript? 15.3. How can we count how often functions are executed? 15.4. How can we time function execution? 15.5. Exercises. 16. Documentation Generator. 16.1. How can we extract documentation comments? 16.2. What input will we try to handle? 16.3. How can we avoid duplicating names? 16.4. Exercises. 17. Module Bundler. 17.1. What will we use as test cases? 17.2. How can we find dependencies? 17.3. How can we safely combine several files into one? 17.4. How can files access each other? 17.5. Exercises. 18. Package Manager. 18.1. What is semantic versioning? 18.2. How can we find a consistent set of packages? 18.3. How can we satisfy constraints? 18.4. How can we do less work? 18.5. Exercises. 19. Virtual Machine. 19.1. What is the architecture of our virtual machine? 19.2. How can we execute these instructions? 19.3. What do assembly programs look like? 19.4. How can we store data? 19.5. Exercises. 20. Debugger. 20.1. What is our starting point? 20.2. How can we make a tracing debugger? 20.3. How can we make the debugger interactive? 20.4. How can we test an interactive application? 20.5. Exercises. 21. Conclusion.
「Nielsen BookData」 より