Supervised machine learning for text analysis in R

著者

書誌事項

Supervised machine learning for text analysis in R

Emil Hvitfeldt, Julia Silge

(Chapman & Hall/CRC data science series)

CRC Press, 2022

  • : pbk

大学図書館所蔵 件 / 2

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 369-378) and index

内容説明・目次

内容説明

How do preprocessing steps such as tokenization, stemming, and removing stop words affect predictive models? Build beginning-to-end workflows for predictive modeling using text as features Compare traditional machine learning methods and deep learning methods for text data

目次

1. Language and modeling. 2. Tokenization. 3. Stop words. 4. Stemming. 5. Word Embeddings. 6. Regression. 7. Classification. 8. Dense neural networks. 9. Long short-term memory (LSTM) networks. 10. Convolutional neural networks.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ