Supervised machine learning for text analysis in R
著者
書誌事項
Supervised machine learning for text analysis in R
(Chapman & Hall/CRC data science series)
CRC Press, 2022
- : pbk
並立書誌 全1件
大学図書館所蔵 件 / 全2件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 369-378) and index
内容説明・目次
内容説明
How do preprocessing steps such as tokenization, stemming, and removing stop words affect predictive models?
Build beginning-to-end workflows for predictive modeling using text as features
Compare traditional machine learning methods and deep learning methods for text data
目次
1. Language and modeling. 2. Tokenization. 3. Stop words. 4. Stemming. 5. Word Embeddings. 6. Regression. 7. Classification. 8. Dense neural networks. 9. Long short-term memory (LSTM) networks. 10. Convolutional neural networks.
「Nielsen BookData」 より