Applied linear regression for business analytics with R : a practical guide to data science with case studies

著者
    • McGibney, Daniel P
書誌事項

Applied linear regression for business analytics with R : a practical guide to data science with case studies

Daniel P. McGibney

(International series in operations research & management science, v. 337)

Springer, c2023

この図書・雑誌をさがす
注記

Includes bibliographical references (p. 275-276)

内容説明・目次

内容説明

Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language.

目次

1. Introduction.- 2. Basic Statistics and Functions using R.- 3. Regression Fundamentals.- 4. Simple Linear Regression.- 5. Multiple Regression.- 6. Estimation Intervals and Analysis of Variance.- 7. Predictor Variable Transformations.- 8. Model Diagnostics.- 9. Variable Selection.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
ページトップへ