Artificial intelligence : foundations of computational agents
著者
書誌事項
Artificial intelligence : foundations of computational agents
Cambridge University Press, 2023
3rd ed
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Previous ed.: 2017
Includes bibliographical references and index
内容説明・目次
内容説明
Fully revised and updated, this third edition includes three new chapters on neural networks and deep learning including generative AI, causality, and the social, ethical and regulatory impacts of artificial intelligence. All parts have been updated with the methods that have been proven to work. The book's novel agent design space provides a coherent framework for learning, reasoning and decision making. Numerous realistic applications and examples facilitate student understanding. Every concept or algorithm is presented in pseudocode and open source AIPython code, enabling students to experiment with and build on the implementations. Five larger case studies are developed throughout the book and connect the design approaches to the applications. Each chapter now has a social impact section, enabling students to understand the impact of the various techniques as they learn them. An invaluable teaching package for undergraduate and graduate AI courses, this comprehensive textbook is accompanied by lecture slides, solutions, and code.
目次
- Preface
- Part I. Agents in the World: 1. Artificial intelligence and agents
- 2. Agent architectures and hierarchical control
- Part II. Reasoning and Planning with Certainty: 3. Searching for solutions
- 4. Reasoning with constraints
- 5. Propositions and inference
- 6. Deterministic planning
- Part III. Learning and Reasoning with Uncertainty: 7. Supervised machine learning
- 8. Neural networks and deep learning
- 9. Reasoning with uncertainty
- 10. Learning with uncertainty
- 11. Causality
- Part IV. Planning and Acting with Uncertainty
- 12. Planning with uncertainty
- 13. Reinforcement learning
- 14. Multiagent systems
- Part V. Representing Individuals and Relations: 15. Individuals and relations
- 16. Knowledge graphs and ontologies
- 17. Relational learning and probabilistic reasoning
- Part VI. The Big Picture: 18. The social impact of artificial intelligence
- 19. Retrospect and prospect
- Appendices
- References
- Index of Algorithms
- Index.
「Nielsen BookData」 より