Inverse problems and data assimilation
著者
書誌事項
Inverse problems and data assimilation
(London Mathematical Society student texts, 107)
Cambridge University Press, 2023
- : paperback
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 192-204) and index
内容説明・目次
内容説明
This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.
目次
- Introduction
- Part I. Inverse Problems: 1. Bayesian inverse problems and well-posedness
- 2. The linear-Gaussian setting
- 3. Optimization perspective
- 4. Gaussian approximation
- 5. Monte Carlo sampling and importance sampling
- 6. Markov chain Monte Carlo
- Exercises for Part I
- Part II. Data Assimilation: 7. Filtering and smoothing problems and well-posedness
- 8. The Kalman filter and smoother
- 9. Optimization for filtering and smoothing: 3DVAR and 4DVAR
- 10. The extended and ensemble Kalman filters
- 11. Particle filter
- 12. Optimal particle filter
- Exercises for Part II
- Part III. Kalman Inversion: 13. Blending inverse problems and data assimilation
- References
- Index.
「Nielsen BookData」 より