A course in quantum mechanics
著者
書誌事項
A course in quantum mechanics
John Wiley & Sons, 2024
- : hardback
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 393-394
Includes index
内容説明・目次
内容説明
A Course in Quantum Mechanics Unique graduate-level textbook on quantum mechanics by John David Jackson, author of the renowned Classical Electrodynamics
A Course in Quantum Mechanics is drawn directly from J. D. Jackson’s detailed lecture notes and problem sets. It is edited by his colleague and former student Robert N. Cahn, who has taken care to preserve Jackson’s unique style. The textbook is notable for its original problems focused on real applications, with many addressing published data in accompanying tables and figures. Solutions are provided for problems that are critical for understanding the material and that lead to the most important physical consequences.
Overall, the text is comprehensive and comprehensible; derivations and calculations come with clearly explained steps. More than 120 figures illustrate underlying principles, experimental apparatus, and data.
In A Course in Quantum Mechanics readers will find detailed treatments of:
Wave mechanics of de Broglie and Schrödinger, the Klein-Gordon equation and its non-relativistic approximation, free particle probability current, expectation values.
Schrödinger equation in momentum space, spread in time of a free-particle wave packet, density matrix, Sturm-Liouville eigenvalue problem.
WKB formula for bound states, example of WKB with a power law potential, normalization of WKB bound state wave functions, barrier penetration with WKB.
Rotations and angular momentum, representations, Wigner d-functions, addition of angular momenta, the Wigner-Eckart theorem.
Time-independent perturbation theory, Stark, Zeeman, Paschen-Back effects, time-dependent perturbation theory, Fermi’s Golden Rule.
Atomic structure, helium, multiplet structure, Russell-Saunders coupling, spin-orbit interaction, Thomas-Fermi model, Hartree-Fock approximation.
Scattering amplitude, Born approximation, allowing internal structure, inelastic scattering, optical theorem, validity criterion for the Born approximation, partial wave analysis, eikonal approximation, resonance.
Semi-classical and quantum electromagnetism, Aharonov-Bohm effect, Lagrangian and Hamiltonian formulations, gauge invariance, quantization of the electromagnetic field, coherent states.
Emission and absorption of radiation, dipole transitions, selection rules, Weisskopf-Wigner treatment of line breadth and level shift, Lamb shift.
Relativistic quantum mechanics, Klein-Gordon equation, Dirac equation, two-component reduction, hole theory, Foldy-Wouthuysen transformation, Lorentz covariance, discrete symmetries, non-relativistic and relativistic Compton scattering.
目次
Preface ix
About the Companion Website xi
1 Basics 1
1.1 Wave Mechanics of de Broglie and Schrödinger 1
1.2 Klein-Gordon Equation 2
1.3 Non-Relativistic Approximation 2
1.4 Free-Particle Probability Current 3
1.5 Expectation Values 4
1.6 Particle in a Static, Conservative Force Field 6
1.7 Ehrenfest Theorem 6
1.8 Schrödinger Equation in Momentum Space 8
1.9 Spread in Time of a Free-Particle Wave Packet 8
1.10 The Nature of Solutions to the Schrödinger Equation 9
1.11 A Bound-State Problem: Linear Potential 10
1.12 Sturm-Liouville Eigenvalue Problem 11
1.13 Linear Operators on Functions 13
1.14 Eigenvalue Problem for a Hermitian Operator 14
1.15 Variational Methods for Energy Eigenvalues 14
1.16 Rayleigh-Ritz Method 16
Problems 18
2 Reformulation 21
2.1 Stern-Gerlach Experiment 22
2.2 Linear Vector Spaces 22
2.3 Linear Operators 25
2.4 Unitary Transformations of Operators 27
2.5 Generalized Uncertainty Relation for Self-Adjoint Operators 27
2.6 Infinite-Dimensional Vector Spaces - Hilbert Space 28
2.7 Assumptions of Quantum Mechanics 29
2.8 Mixtures and the Density Matrix 30
2.9 Measurement 32
2.10 Classical vs. Quantum Probabilities 33
2.11 Capsule Review of Classical Mechanics and Conservation Laws 34
2.12 Translation Invariance and Momentum Conservation 37
2.13 Dirac’s p’s and q’s 38
2.14 Time Development of the State Vector 41
2.15 Schrödinger and Heisenberg Pictures 42
2.16 Simple Harmonic Oscillator 46
Problems 51
3 Wentzel-Kramers-Brillouin (WKB) Method 55
3.1 Semi-classical Approximation 55
3.2 Solution in One Dimension 56
3.3 Schrödinger Equation for the Linear Potential 58
3.4 Connection Formulae for the WKB Method 63
3.5 WKB Formula for Bound States 65
3.6 Example of WKB with a Power Law Potential 67
3.7 Normalization of WKB Bound State Wave Functions 68
3.8 Bohr’s Correspondence Principle and Classical Motion 68
3.9 Power of WKB 72
3.10 Barrier Penetration with the WKB Method 73
3.11 Symmetrical Double-Well Potential 75
3.12 Application of the WKB Method to Ammonia Molecule 79
Problems 80
4 Rotations, Angular Momentum, and Central Force Motion 85
4.1 Infinitesimal Rotations 85
4.2 Construction of Irreducible Representations 88
4.3 Coordinate Representation of Angular Momentum Eigenvectors 91
4.4 Observation of Sign Change for Rotation by 2π 92
4.5 Euler Angles, Wigner d-functions 95
4.6 Application to Nuclear Magnetic Resonance 98
4.7 Addition of Angular Momenta 104
4.8 Integration Over the Rotation Group 106
4.9 Gaunt Integral 108
4.10 Tensor Operators 109
4.11 Wigner-Eckart Theorem 112
4.12 Applications of the Wigner-Eckart Theorem 114
4.13 Two-Body Central Force Motion 118
4.14 The Coulomb Problem 121
4.15 Patterns of Bound States 125
4.16 Hellmann-Feynman Theorem 127
Problems 128
5 Time-Independent Perturbation Theory 135
5.1 Time-Independent Perturbation Expansion 135
5.2 Interlude: Spectra and History 137
5.3 Fine Structure of Hydrogen 139
5.4 Stark Effect in Ground-State Hydrogen 141
5.5 Perturbation Theory with Degeneracy 143
5.6 Linear Stark Effect in Hydrogen 145
5.7 Perturbation Theory with Near Degeneracy 146
5.8 Zeeman and Paschen-Back Effects in Hydrogen 149
Problems 149
6 Atomic Structure 151
6.1 Parity 151
6.2 Identical Particles and the Pauli Exclusion Principle 153
6.3 Atoms 158
6.4 Helium Atom 159
6.5 Periodic Table 164
6.6 Multiplet Structure, Russell-Saunders Coupling 165
6.7 Spin-Orbit Interaction 172
6.8 Intermediate Coupling 176
6.9 Thomas-Fermi Atom 180
6.10 Hartree-Fock Approximation 185
Problems 189
7 Time-Dependent Perturbation Theory and Scattering 197
7.1 Time-dependent Perturbation Theory 197
7.2 Fermi’s Golden Rule 202
7.3 Scattering Amplitude 204
7.4 Born Approximation 205
7.5 Scattering Theory from Fermi’s Golden Rule 207
7.6 Inelastic Scattering 211
7.7 Optical Theorem 214
7.8 Validity Criterion for the First Born Approximation 216
7.9 Eikonal Approximation 216
7.10 Method of Partial Waves 223
7.11 Behavior of the Cross Section and the Argand Diagram 225
7.12 Hard Sphere Scattering 227
7.13 Strongly Attractive Potentials and Resonance 229
7.14 Levinson’s Theorem 232
Problems 234
8 Semi-Classical and Quantum Electromagnetic Field 241
8.1 Electromagnetic Hamiltonian and Gauge Invariance 241
8.2 Aharonov-Bohm Effect 242
8.3 Semi-Classical Radiation Theory 244
8.4 Scalar Field Quantization 246
8.5 Quantization of the Radiation Field 247
8.6 States of the Electromagnetic Field 252
8.7 Vacuum Expectation Values of E, E ⋅ E over Finite Volume 253
8.8 Classical vs. Quantum Radiation 254
8.9 Quasi-Classical Fields and Coherent States 255
Problems 257
9 Emission and Absorption of Radiation 259
9.1 Matrix Elements and Rates 259
9.2 Dipole Transitions 261
9.3 General Selection Rules 262
9.4 Charged Particle in a Central Field 263
9.5 Decay Rates with LS Coupling 264
9.6 Line Breadth and Level Shift 267
9.7 Alteration of Spontaneous Emission from Changed Density of States 272
Problems 277
10 Relativistic Quantum Mechanics 281
10.1 Klein-Gordon Equation 281
10.2 Dirac Equation 283
10.3 Angular Momentum in Dirac Equation 285
10.4 Two-Component Equation and Plane-Wave Solutions 286
10.5 Dirac’s Treatment of Negative Energy States 288
10.6 Heisenberg Operators and Equations of Motion 289
10.7 Hydrogen in the Dirac Equation 290
10.8 Foldy-Wouthuysen Transformation 291
10.9 Lorentz Covariance 294
10.10 Discrete Symmetries 297
10.11 Bilinear Covariants 301
10.12 Applications to Electromagnetic Form Factors 302
10.13 Potential Scattering of a Dirac Particle 305
10.14 Neutron-Electron Scattering 307
10.15 Compton Scattering 312
Problems 322
A Dimensions and Units 327
B Mathematical Tools 329
B. 1 Contour Integration 329
B. 2 Green Function for Helmholtz Equation 333
B. 3 Wigner 3-j and 6-j Symbols 335
C Selected Solutions 339
C. 1 Chapter 1 339
C. 2 Chapter 2 340
C. 3 Chapter 3 343
C. 4 Chapter 4 352
C. 5 Chapter 5 362
C. 6 Chapter 6 366
C. 7 Chapter 7 375
C. 8 Chapter 8 377
C. 9 Chapter 9 380
C. 10 Chapter 10 387
Bibliography 393
Index 395
「Nielsen BookData」 より