Ring theory

著者

    • Khattar, Dinesh
    • Agrawal, Neha

書誌事項

Ring theory

Dinesh Khattar, Neha Agrawal

Springer, c2023 , Ane Books

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes index

"Jointly published with Ane Books Pvt. Ltd."--T.p. verso

内容説明・目次

内容説明

This textbook is designed for the UG/PG students of mathematics for all universities over the world. It is primarily based on the classroom lectures, the authors gave at the University of Delhi. This book is used both for self-study and course text. Full details of all proofs are included along with innumerous solved problems, interspersed throughout the text and at places where they naturally arise, to understand abstract notions. The proofs are precise and complete, backed up by chapter end problems, with just the right level of difficulty, without compromising the rigor of the subject. The book starts with definition and examples of Rings and logically follows to cover Properties of Rings, Subrings, Fields, Characteristic of a Ring, Ideals, Integral Domains, Factor Rings, Prime Ideals, Maximal Ideals and Primary Ideals, Ring Homomorphisms and Isomorphisms, Polynomial Rings, Factorization of Polynomials, and Divisibility in Integral Domains.

目次

1. Rings......................................................................................................... 1-43 1.1 Definition and Examples of Rings........................................................ 5 1.2 Elementary Properties of Rings.......................................................... 15 1.3 Subrings............................................................................................... 24 1.4 Algebra of Subrings............................................................................ 31 1.5 Idempotent and Nilpotent Elements.................................................... 34 2. Integral Domains and Fields.............................................................. 45-78 2.1 Special Kinds of Rings........................................................................ 46 2.2 Some Theorems on Integral Domains and Fields.............................. 58 2.3 Characteristic of a Ring....................................................................... 68 3. Ideals and Factor Rings.................................................................... 79-136 3.1 Ideals in a Ring................................................................................... 80 3.2 Intersection and Union of Ideals......................................................... 90 3.3 Sum and Product of Two Ideals......................................................... 92 3.4 Ideal Generated by a Subset................................................................ 96 3.5 Simple Rings..................................................................................... 105 3.6 Factor Rings...................................................................................... 107 3.7 Types of Ideals.................................................................................. 116 4. Ring Homomorphisms and Isomorphisms........................................ 137-183 4.1 Ring Homomorphism........................................................................ 138 4.2 Properties of Ring Homomorphisms................................................. 144 4.3 Kernel of Ring Homomorphism....................................................... 156 4.4 Applications of Natural Homomorphism.......................................... 158 4.5 Isomorphism Theorems..................................................................... 160 4.6 The Field of Quotients of an Integral Domain................................. 171 5. Polynomial Rings............................................................................. 185-212 5.1 Ring of Polynomials.......................................................................... 185 (xii) 5.2 The Division Algorithm and its Consequences................................ 198 5.3 Principal Ideal Domain..................................................................... 204 6. Factorization of Polynomials ...................................................... 213-243 6.1 Irreducible and Reducible Polynomials............................................ 214 6.2 Irreducibility Tests............................................................................ 223 6.3 Irreducible Polynomials, Maximal Ideals and Fields....................... 233 7. Divisibility in Integral Domains.................................................... 245-289 7.1 Irreducible and Prime Elements........................................................ 246 7.2 Unique Factorization Domains......................................................... 262 7.3 Euclidean Domains............................................................................ 279 Appendix One..................................................................................... 291-292 Index................................................................................................... 293-294

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BD04308987
  • ISBN
    • 9783031294396
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham,[New Delhi]
  • ページ数/冊数
    xiii, 294 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
ページトップへ