Telling stories with data : with applications in R
Author(s)
Bibliographic Information
Telling stories with data : with applications in R
(Chapman & Hall/CRC data science series)(A Chapman & Hall book)
CRC Press, 2023
1st ed
- : hbk
Available at 3 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 551-589) and index
Description and Table of Contents
Description
The book equips students with the end-to-end skills needed to do data science. That means gathering, cleaning, preparing, and sharing data, then using statistical models to analyse data, writing about the results of those models, drawing conclusions from them, and finally, using the cloud to put a model into production, all done in a reproducible way.
At the moment, there are a lot of books that teach data science, but most of them assume that you already have the data. This book fills that gap by detailing how to go about gathering datasets, cleaning and preparing them, before analysing them. There are also a lot of books that teach statistical modelling, but few of them teach how to communicate the results of the models and how they help us learn about the world. Very few data science textbooks cover ethics, and most of those that do, have a token ethics chapter. Finally, reproducibility is not often emphasised in data science books. This book is based around a straight-forward workflow conducted in an ethical and reproducible way: gather data, prepare data, analyse data, and communicate those findings. This book will achieve the goals by working through extensive case studies in terms of gathering and preparing data, and integrating ethics throughout. It is specifically designed around teaching how to write about the data and models, so aspects such as writing are explicitly covered. And finally, the use of GitHub and the open-source statistical language R are built in throughout the book.
Key Features:
Extensive code examples.
Ethics integrated throughout.
Reproducibility integrated throughout.
Focus on data gathering, messy data, and cleaning data.
Extensive formative assessment throughout.
Table of Contents
1. Telling stories with data 2. Drinking from a fire hose 3. Reproducible workflows Part 1. Foundations 4. Writing research 5. Static communication Part 2. Communication 6. Farm data 7. Gather data 8. Hunt data Part 3. Acquisition 9. Clean and prepare 10. Store and share Part 4. Preparation 11. Exploratory data analysis 12. Linear models 13. Generalized linear models 14. Causality from observational data 15. Multilevel regression with post-stratification 16. Text as data 17. Concluding remarks
by "Nielsen BookData"