Pandas for everyone : Python data analysis

書誌事項

Pandas for everyone : Python data analysis

Daniel Y. Chen

(Addison Wesley data & analytics series)

Addison-Wesley, c2023

2nd ed

  • : pbk

この図書・雑誌をさがす
注記

Includes index

内容説明・目次

内容説明

Manage and Automate Data Analysis with Pandas in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets. Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if you're new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set. New features to the second edition include: Extended coverage of plotting and the seaborn data visualization library Expanded examples and resources Updated Python 3.9 code and packages coverage, including statsmodels and scikit-learn libraries Online bonus material on geopandas, Dask, and creating interactive graphics with Altair Chen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine data sets and handle missing data Reshape, tidy, and clean data sets so they're easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large data sets with groupby Leverage Pandas' advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the "best" one Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning

目次

Foreword by Anne M. Brown xxiii Foreword by Jared Lander xxv Preface xxvii Changes in the Second Edition xxxix Part I: Introduction 1 Chapter 1. Pandas DataFrame Basics 3 Learning Objectives 3 1.1 Introduction 3 1.2 Load Your First Data Set 4 1.3 Look at Columns, Rows, and Cells 6 1.4 Grouped and Aggregated Calculations 23 1.5 Basic Plot 27 Conclusion 28 Chapter 2. Pandas Data Structures Basics 31 Learning Objectives 31 2.1 Create Your Own Data 31 2.2 The Series 33 2.3 The DataFrame 42 2.4 Making Changes to Series and DataFrames 45 2.5 Exporting and Importing Data 52 Conclusion 63 Chapter 3. Plotting Basics 65 Learning Objectives 65 3.1 Why Visualize Data? 65 3.2 Matplotlib Basics 66 3.3 Statistical Graphics Using matplotlib 72 3.4 Seaborn 78 3.5 Pandas Plotting Method 111 Conclusion 115 Chapter 4. Tidy Data 117 Learning Objectives 117 Note About This Chapter 117 4.1 Columns Contain Values, Not Variables 118 4.2 Columns Contain Multiple Variables 122 4.3 Variables in Both Rows and Columns 126 Conclusion 129 Chapter 5. Apply Functions 131 Learning Objectives 131 Note About This Chapter 131 5.1 Primer on Functions 131 5.2 Apply (Basics) 133 5.3 Vectorized Functions 138 5.4 Lambda Functions (Anonymous Functions) 141 Conclusion 142 Part II: Data Processing 143 Chapter 6. Data Assembly 145 Learning Objectives 145 6.1 Combine Data Sets 145 6.2 Concatenation 146 6.3 Observational Units Across Multiple Tables 154 6.4 Merge Multiple Data Sets 160 Conclusion 167 Chapter 7. Data Normalization 169 Learning Objectives 169 7.1 Multiple Observational Units in a Table (Normalization) 169 Conclusion 173 Chapter 8. Groupby Operations: Split-Apply-Combine 175 Learning Objectives 175 8.1 Aggregate 176 8.2 Transform 184 8.3 Filter 188 8.4 The pandas.core.groupby.DataFrameGroupBy object 190 8.5 Working with a MultiIndex 195 Conclusion 199 Part III: Data Types 203 Chapter 9. Missing Data 203 Learning Objectives 203 9.1 What Is a NaN Value? 203 9.2 Where Do Missing Values Come From? 205 9.3 Working with Missing Data 210 9.4 Pandas Built-In NA Missing 216 Conclusion 218 Chapter 10. Data Types 219 Learning Objectives 219 10.1 Data Types 219 10.2 Converting Types 220 10.3 Categorical Data 225 Conclusion 227 Chapter 11. Strings and Text Data 229 Introduction 229 Learning Objectives 229 11.1 Strings 229 11.2 String Methods 233 11.3 More String Methods 234 11.4 String Formatting (F-Strings) 236 11.5 Regular Expressions (RegEx) 239 11.6 The regex Library 247 Conclusion 247 Chapter 12. Dates and Times 249 Learning Objectives 249 12.1 Python's datetime Object 249 12.2 Converting to datetime 250 12.3 Loading Data That Include Dates 253 12.4 Extracting Date Components 254 12.5 Date Calculations and Timedeltas 257 12.6 Datetime Methods 259 12.7 Getting Stock Data 261 12.8 Subsetting Data Based on Dates 263 12.9 Date Ranges 266 12.10 Shifting Values 270 12.11 Resampling 276 12.12 Time Zones 278 12.13 Arrow for Better Dates and Times 280 Conclusion 280 Part IV: Data Modeling 281 Chapter 13. Linear Regression (Continuous Outcome Variable) 283 13.1 Simple Linear Regression 283 13.2 Multiple Regression 287 13.3 Models with Categorical Variables 289 13.4 One-Hot Encoding in scikit-learn with Transformer Pipelines 294 Conclusion 296 Chapter 14. Generalized Linear Models 297 About This Chapter 297 14.1 Logistic Regression (Binary Outcome Variable) 297 14.2 Poisson Regression (Count Outcome Variable) 304 14.3 More Generalized Linear Models 308 Conclusion 309 Chapter 15. Survival Analysis 311 15.1 Survival Data 311 15.2 Kaplan Meier Curves 312 15.3 Cox Proportional Hazard Model 314 Conclusion 317 Chapter 16. Model Diagnostics 319 16.1 Residuals 319 16.2 Comparing Multiple Models 324 16.3 k-Fold Cross-Validation 329 Conclusion 334 Chapter 17. Regularization 335 17.1 Why Regularize? 335 17.2 LASSO Regression 337 17.3 Ridge Regression 338 17.4 Elastic Net 340 17.5 Cross-Validation 341 Conclusion 343 Chapter 18. Clustering 345 18.1 k-Means 345 18.2 Hierarchical Clustering 351 Conclusion 356 Part V. Conclusion 357 Chapter 19. Life Outside of Pandas 359 19.1 The (Scientific) Computing Stack 359 19.2 Performance 360 19.3 Dask 360 19.4 Siuba 360 19.5 Ibis 361 19.6 Polars 361 19.7 PyJanitor 361 19.8 Pandera 361 19.9 Machine Learning 361 19.10 Publishing 362 19.11 Dashboards 362 Conclusion 362 Chapter 20. It's Dangerous To Go Alone! 363 20.1 Local Meetups 363 20.2 Conferences 363 20.3 The Carpentries 364 20.4 Podcasts 364 20.5 Other Resources 365 Conclusion 365 Appendices 367 A. Concept Maps 369 B. Installation and Setup 373 C. Command Line 377 D. Project Templates 379 E. Using Python 381 F. Working Directories 383 G. Environments 385 H. Install Packages 389 I. Importing Libraries 391 J. Code Style 393 K. Containers: Lists, Tuples, and Dictionaries 395 L. Slice Values 399 M. Loops 401 N. Comprehensions 403 O. Functions 405 P. Ranges and Generators 409 Q. Multiple Assignment 413 R. Numpy ndarray 415 S. Classes 417 T. SettingWithCopyWarning 419 U. Method Chaining 423 V. Timing Code 427 W. String Formatting 429 X. Conditionals (if-elif-else) 433 Y. New York ACS Logistic Regression Example 435 Z. Replicating Results in R 443 Index 451

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
ページトップへ