Instrumental methods of chemical analysis

著者

    • Ahluwalia, V. K.

書誌事項

Instrumental methods of chemical analysis

V.K. Ahluwalia

Springer, c2023

この図書・雑誌をさがす

注記

Includes index

内容説明・目次

内容説明

This textbook describes the theory underlying each instrumental procedure and applications of all instrumental methods. It comprehensively covers the instrumental methods of chemical analysis, chromatography, thermal methods of chemical analysis, electrochemical methods, and instrumental methods of analysis of inorganic compounds. These include thermogravimetric analysis, differential thermal analysis, thermometric titrations, and some miscellaneous thermal methods like derivative thermogravimetric analysis, thermobarography, differential scanning calorimetry, thermomechanical analysis, and electric thermal analysis, flame photometry, fluorimetry and phosphorimetry, nephelometric and turbidimetric techniques, refractory and interferometry, and X-ray methods. Each chapter consists a set of problems to aid self-learning. This textbook is highly useful for graduate and postgraduate students on chemistry and its allied fields. It can also be used as a quick reference material by professionals working in the various fields of chemistry and material science.

目次

Instrumental Methods of Chemical Analysis V.K. Ahluwalia Visiting Professor Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi Ane Books Pvt. Ltd. New Delhi Chennai Contents Part I: Introduction 1. Introduction to Instrumental Methods of Chemical Analysis 1 1.1 Chemical Analysis 3 1.2 Instrumental Methods-Their Classification 3 1.3 Selection of the Instrumental Method 5 1.4 Application of Instrumental Methods/ Techniques 5 1.4.1 Chromatographic Methods 5 1.4.2 Thermal Methods 5 1.4.3 Electrochemical Methods 5 1.4.4 Instrumental Methods for the Determination of the structure of Organic Compounds 6 1.4.5 Instrumental Methods of Analysis of Inorganic Compounds 8 1.4.6 Miscellaneous Instrumental Methods 9 Part II: Chromatographic Methods 2. Chromatography 13 2.1 Introduction 13 2.2 Principle of Chromatographic Separation 13 2.3 Types of Chromatography 14 2.3.1 Partition Chromatography 14 2.3.2 Adsorption Chromatography 15 2.3.3 Exclusion Chromatography 15 2.3.4 Ion-exchange Chromatography 15 Exercises 16 3. Paper Chromatography 17 3.1 Circular (or Radical) Paper Chromatography 17 3.2 Ascending Paper Chromatography 20 3.3 Descending Paper Chromatography 20 3.4 Paper Chromatographic Ceparations 21 3.4.1 Separation and Identification of Group 1 Cations (Pb', Ag*, 3.4.2 Separation and Identification of Cations of Group II 21 (Hg2+/-, Cd2+ and Bi3+/-) 22 viii Instrumental Methods of Chemical Analysis 3.4.3 Separation and Identification of Cu" and Cd" Using Paper Chromatography 22 3.4.4 Separation and Identification of Amino Acids by Descending Paper Chromatography 23 3.4.5 Separation and Identification of Monosaccharides by Descending Paper Chromatography 24 Exercises 25 4. Thin Layer Chromatography 27 4.1 Principle of TLC Separation 27 4.2 Preparation of TLC Plates 27 4.3 Procedure for TLC 29 4.4 Preparative TLC 31 4.5 Two-dimensional TLC 32 4.6 High-Performance Thin-Layer Chromatography (HPTLC) 33 4.7 Reversed Phase Partition Thin Layer Chromatography 34 4.8 Thin Layer Chromatographic Separations 34 4.8.1 Separation and Identification of Amino Acids by TLC 34 4.8.2 Separation and Identification of Carbohydrates by TLC 35 4.8.3 Separation and Identification of Ketones 35 Exercises 36 5. Column Chromatography 37 5.1 Principle of Column Chromatography 38 5.2 Procedure of Column Chromatography 38 5.3 High Performance Column Chromatography 40 5.4 Dry Column Chromatography 41 5.5 Chiral Chromatography 42 5.6 Columns Chromatographic Separations 43 5.6.1 Separation and Identification of a Mixture of o-Nitroaniline and p-Nitroaniline by Column Chromatography 43 5.6.2 Separation and Identification of a Mixture of cis- and trans-Azobenzene by Column Chromatography 43 5.6.3 Purification of Anthracene by Column Chromatography 44 Exercises44 6. Gas Chromatography 45 6.1 Introduction 45 6.2 Principle of Gas Chromatography 45 Contents 6.3 6.4 6.5 6.6 The Chromatographic Instrument 6.3.1 Carrier Gas 6.3.2 Sample Injection System 6.3.3 The Column 6.3.4 The Detector 6.3.5 Temperature Programming Preparative Gas Chromatography Applications of Gas Chromatography Gas Chromatographic Separations ix 47 47 47 48 50 50 50 51 53 6.6.1 Estimation of Sucrose 53 6.6.2 Estimation of Aluminium in Water 54 Exercises 54 7. High Performance Liquid Chromatography (HPLC) 55 7.1 Introduction 55 7.2 Principle of HPLC 55 7.3 HPLC Instruments 56 7.3.1 Mobile Phase 56 7.3.2 Sample Injection Systems 56 7.3.3 Column 56 7.3.4 Detector 57 Exercises 57 8. Gel Chromatography 59 8.1 Introduction 59 8.2 Principle of Gel Chromatography 59 8.3 Types of Gels 59 8.4 Applications of Gel Chromatography 61 Exercises 61 9. Ion Exchange Chromatography 63 9.1 Introduction 63 9.2 Different Types of Resins 64 9.2.1 Anion Exchange Resins 64 9.2.2 Cation Exchange Resins 65 9.3 Principle of Ion Chromatography 65 9.4 Procedure for Ion Chromatography 66 9.5 Applications of Ion Chromatography 67 9.5.1 Determination of Anions 67 9.5.2 Separation of Lit, Na' and K+/- Ions 68 9.5.3 Removal of Phosphate (Interferening Radical) 68 x Instrumental Methods of Chemical Analysis 9.5.4 Softening of Hard Water 68 9.5.5 Demineralised Water 69 9.5.6 Separation of Amino Acids 70 Exercises 71 10. Electro Chromatography 73 10.1 Introduction 73 10.2 Paper Electrophoresis 73 10.3 Gel Electrophoresis 74 10.4 Capillary Electrophoresis (CE) 75 Exercises 77 Part III: Thermal Methods of Chemical Analysis 11. Thermogravimetric Analysis 81 11.1 Introduction 81 11.2 Thermogravimetric Analysis 82 11.3 Thermogravimetric Analyser 82 11.3.1 Measurement of Weight 82 11.3.2 Heating Arrangement and Temperature Measurement 83 11.3.3 Sample Holders 83 11.3.4 Atmospheric Control 83 11.3.5 Recorders 83 11.4 Thermogravimetric Curve (TG curve) 84 11.4.1 Factors Affecting Thermogravimetric Curves 85 11.5 Applications of TGA 86 11.5.1 Determination of Thermal Stability of Salts 86 11.5.2 Analysis of Mixtures 87 11.5.3 Determination of Curie Temperature 87 11.5.4 Organic Compounds 88 Exercises 89 12. Differential Thermal Analysis 91 12.1 Introduction 91 12.2 Differential Thermal Analyser 92 12.3 Factors Affecting DTA 93 12.4 Applications of DTA 94 12.4.1 Heat of Reaction 94 12.4.2 Specific Heat 94 12.4.3 Identification of Substances 95 12.4.4 Identification of the Products of a Reaction 95 12.4.5 Purity of the Compound 95 12.4.6 Quantitative Analysis 95 12.5 Miscellaneous Applications 95 Exercises 96 Contents 13. Thermometric Titrations xi 97 13.1 Introduction 97 13.2 Thermometric Titration Apparatus 98 13.3 Titrimetric Procedure 99 13.4 Applications 99 13.4.1 Neutralisation Titrations 99 13.4.2 Precipitation Titrations 100 13.4.3 Complexation Titrations 100 13.4.4 Redox Titrations 101 Exercises 101 14. Miscellaneous Thermal Methods 103 14.1 Derivative Thermogravimetric Analysis (DTA) 103 14.2 Thermobarography 103 14.3 Differential Scanning Calorimetry (DSC) 103 14.4 Thermomechanical Analysis (TMA) 104 14.5 Electric Thermal Analysis (ETA) 105 Exercises 105 Part-IV: Electrochemical Method 15. Coulometric Method Of Analysis 109 15.1 Introduction 109 15.2 Coulometer 110 15.3 Coulometric Analysis 111 15.3.1 Constant Current Coulometric Analysis 111 15.3.2 Controlled Potential Coulometric Analysis 112 15.4 Coulometric Titrations 112 15.4.1 Principles of Coulometric Titrations 112 15.4.2 Advantages of Coulometric Titrations 112 15.4.3 Errors in Coulometric Titrations 112 15.4 Nature of Electrodes Used in Coulometric Titrations 113 15.5 Applications of Coulometric Titrations 113 Exercises 115 16. Polarography 16.1 Introduction 117 16.2 The Instrument 117 16.3 Factors Affecting Current-voltage Curves 119 16.4 Half Wave Potentials 121 16.5 Applications of Polarography 122 Exercises 123 xii Instrumental Methods of Chemical Analysis 17. Amperometric Titrations 125 17.1 Introduction 125 17.2 Apparatus for Amperometric Titrations 125 17.3 End point in Amperometric Titrations 128 17.4 Advantages of Amperometric Titrations 129 17.5 Disadvantages of Amperometric Titrations 130 17.6 Applications of Amperometric Titrations 130 17.7 Amperometric Titrations with Two Indicator Electrodes 132 Exercises 133 18. Potentiometric Titrations 135 18.1 Introduction 135 18.2 Principle of Potentiometric Titration 136 18.3 Indicator Electrode 137 18.4 Reference Electrodes 138 18.5 Apparatus for Potentiometric Titrations 139 18.6 Applications of Potentiometric Titrations 140 18.6.1 Neutralisation Titrations 140 18.6.2 Oxidation-Reduction Titrations 141 18.6.3 Precipitation Titrations 143 18.6.4 Complexometric Titrations 144 18.7 Differential Titrations 144 18.8 Automatic Titrations 145 18.9 Advantages of Potentiometric Titrations 145 Exercises 146 19. Conductometric Titrations 147 19.1 Introduction 147 19.2 Terms Used in Conductometric Titrations 147 19.3 Applications of Conductometric Titrations 149 19.4 Conductometric Titrations 150 19.4.1 Conductometric Titrations of Acids-alkalies 150 19.4.2 Conductometric Precipitation Reactions 153 19.5 Advantages of Conductometric Titrations 154 Exercises 154 20. Spectrophotometric Titrations 155 20.1 Introduction 155 20.2 Procedure of Titration 156 20.3 Applications 157 Exercises 158 Contents 21. High Frequency Titrations xiii 159 21.1 Introduction 159 21.2 Instrument 159 21.3 High Frequency Titrations 161 21.4 Applications of High Frequency Methods 162 21.4.1 Acid-base Titrations 162 21.4.2 Measurement of Dielectric Constant 162 21.4.3 Analysis of Binary Mixtures 164 21.4.4 Complexometric Titrations 164 21.5 Advantages of High Frequency Titrations 164 Exercises 164 22. pH Measurements 167 22.1 Introduction 167 22.2 Determination of pH of a Solution by Potentiometry 169 22.2.1 Determination of pH Using Hydrogen Electrode 169 22.2.2 Determination of pH Using Glass Electrode 171 22.2.3 Determination of pH Using Quinhydrone Electrode 173 22.3 Determination of pH Using a pH Meter 175 22.4 Determination of pH Using pH Indicators 176 Exercises 177 23. Calorimetry 179 23.1 Introduction 179 23.2 Principle of Calorimeter 181 23.3 Procedure for the Estimation of Cue' in a Unknown Solution 181 Exercises 184 Part V: Instrumental Method for Structure Determination of Organic Compounds 24. Infrared Spectroscopy 187 24.1 Introduction 187 24.2 Basic Theory 189 24.3 Instrumentation 189 24.4 Fourier Transform Infrared (FTIR) Spectrometer 190 24.4.1 Principle of Interferometry 191 24.5 Mode of Vibrations 191 24.5.1 Number of Fundamental Vibrations, Selection Rules 192 24.6 Recording of IR Spectra 193 24.7 Major Bands in the IR Spectra of Different Types of Organic Compounds 197 xiv Instrumental Methods of Chemical Analysis 24.8 Interpretation of the Infrared Spectra 205 24.9 Applications of Infrared Spectroscopy 219 24.10 IR spectras of Some Typical Compounds 222 24.11 Non-dispersive Infrared Spectroscopy 230 Exercises 230 25. Ultraviolet Spectroscopy 241 25.1 Introduction 241 25.2 Terms used in UV Spectroscopy 243 25.3 Electronic Transitions 244 25.4 Ultraviolet Spectrometer 246 25.5 Characteristic Absorption of Organic Compounds 248 25.6 Interpretation of UV Spectra 269 25.7 Applications of UV Spectroscopy 269 Exercises 273 26. Nuclear Magnetic Resonance (NMR) Spectroscopy 279 26.1 Proton Nuclear Magnetic Resonance ('HNMR or PMR) 279 Spectroscopy 26.1.1 Introduction 279 26.1.2 The NMR Spectrometer 281 26.1.3 Interpretation of the 'HNMR Spectra 284 26.1.4 Chemical Shifts of Different Types of Protons 293 26.1.5 The Splitting of Signals 299 26.1.6 Final Interpreting an 'HNMR Spectra 311 26.1.7 Interpretation of the 'HNMR Spectra of Some Simple Molecules 314 26.1.8 Predicting the 'HNMR Spectrum of an Organic 316 Compound 26.1.9 Complicated 'HNMR Spectra 317 26.1.10 Applications of Proton Magnetic Resonance 325 Spectroscopy 26.2 Carbon-13 NMR (13C NMR) Spectroscopy 329 26.2.1 Introduction 329 26.2.2 Interpretation of 13C NMR Spectra 330 26.2.3 Chemical Shift 332 26.2.4 Identification of Peaks in 13C NMR Spectra on the Basis of Hybridization of Each Carbon Atom 335 26.2.5 Two-dimensional (2d) 13C NMR Spectroscopy 338 26.2.6 Applications of 13C Spectra 338 Exercise s 340 Contents 27. Electron Spin Resonance (ESR) Spectroscopy xv 353 27.1 Introduction 353 27.2 Instrument 355 27.3 Recording an ESR spectra 357 27.4 Hyperfine Splitting 359 27.4.1 ESR Spectra of Hydrogen Atom 359 27.4.2 ESR Spectra of Deuterium 360 27.4.3 ESR Spectra of Methyl Radical 362 27.5 Determination of g-value 362 27.6 Line width 363 27.7 Hyperfine Structure in ESR Spectra 363 27.8 Applications of ESR Spectroscopy 366 27.9 Electron Nuclear Double Resonance (ENDOR) 369 27.10 Electron Double Resonance (ELDOR) 369 Exercise s 369 28. Mass Spectrometry 373 28.1 Introduction 373 28.2 The Mass Spectrometer 374 28.3 The Mass Spectrum 376 28.4 Determination of Molecular Formula 378 28.4.1 Molecular Formula from Isotopic Peaks 378 28.4.2 Molecular Formula Using High-resolution Mass Spectrometry 381 28.5 Recognitation of the Molecular Ion Peak 382 28.6 Use of the Molecular Formula 384 28.7 Fragmentation 385 28.7.1 Fragmentation by Cleavage of a C-C Single Bond 385 28.7.2 Fragmentation by Cleavage of More than One Bond 388 28.7.3 Rearrangements 390 28.8 Mass Spectra of Some Typical Classes of Compounds 391 28.8.1 Saturated Hydrocarbons 391 28.8.2 Unsaturated Hydrocarbons 393 28.8.3 Alcohols 395 28.8.4 Phenols 398 28.8.5 Ethers 399 28.8.6 Ketones 400 28.8.7 Aldehydes 403 28.8.8 Carboxylic Acids 404 xvi Instrumental Methods of Chemical Analysis 28.8.9 Carboxylic Esters 405 28.8.10 Lactones 407 28.8.11 Amines 408 28.8.12 Amides 409 28.8.13 Nitro Compounds 410 28.8.14 Nitrites 411 28.8.15 Nitrates 411 28.8.16 Sulfur Containing Compounds 411 28.8.17 Compounds Containing Halogens 412 28.8.18 Heterocyclic Compounds 414 28.9 Gas Chromatography-Mass Spectrometry 417 28.9.1 Applications of Gas Chromatography-Mass 417 Spectrometry 28.10 Negative Ion Mass Spectrometry 417 28.10.1 Negative Ion Formation 418 28.10.2 Reactions Observed During Negative Ion Chemical Ionization 418 28.10.3 Fragment Patterns of Negative Ions 419 28.10.4 Applications of Negative Ion Mass Spectrometry 423 28.11 Applications of Mass Spectrometry 425 28.11.1 Determination of Structure of Organic Compounds 425 28.11.2 Determination of Molecular Weight and Molecular Formula 425 28.11.3 Miscellaneous Applications 426 28.12 Solved Problems 426 Exercises 426 29. Polarimetry 433 29.1 Introduction 433 29.2 Plane Polarized Light 433 29.3 Optical Activity 434 29.4 Kinds of Molecules Analysed by Polarimetry 435 29.5 Theoretical Considerations 435 29.6 Polarimeter 437 29.7 Applications of Polarimetry 437 Exercises 441 Contents 30. Optical Rotatory Dispersion and Circular Dichroism xvii 443 30.1 Introduction 443 30.2 Circular Birefringence 445 30.3 Circular Dichroism 445 30.4 Cotton Effect 446 30.5 Optical Rotatory Dispersion (ORD) 446 30.5.1 Types of Optical Rotatory Dispresion Curves 446 30.6 Comparison of ORD and CD Curves 448 30.7 Axial Haloketone Rule 448 30.8 The Octant Rule 449 30.9 Instrumentation for ORD and CD Measurements 451 30.9.1 Instruments for ORD Measurements 451 30.9.2 Instrumentation for CD Measurements 452 30.10 Applications of Optical Rotatory Dispersion and Circular Dichroism 453 Exercises456 Part-VI: Instrumental Methods for Analysis of Inorganic Compounds 31. Microwave Spectroscopy 459 31.1 Introduction 459 31.2 Differences between Microwave Spectroscopy and IR Spectroscopy 460 31.3 Theory of Microwave Spectroscopy 460 31.4 Diatomic Molecule as a Rigid Rotator 460 31.5 Selection Rules for Rotational Spectra 463 31.6 Instrument for Microwave Spectroscopy 465 31.7 Aplications 467 32. Exercises470 Nuclear Quadrupole Resonance (NQR) Spectroscopy 473 32.1 Introduction 473 32.2 Theory 473 32.3 NQR Instrument 475 32.4 Applications of NQR 476 33. Exercises478 Raman Spectroscopy 479 33.1 Introduction 479 35.2 Principle of Raman Spectroscopy 479 33.3 Characteristics of Raman Lines 481 33.4 Differences between Raman Spectra and Infrared Spectra 481 xviii Instrumental Methods of Chemical Analysis 33.5 Polarizability 482 33.6 Explanation of Mechanism of Raman Effect 482 33.7 Raman Spectrometer 485 33.8 Intensity of Raman Peaks 486 33.9 Applications of Raman Spectroscopy 486 Exercises 491 34. Mossbauer Spectroscopy 493 34.1 Introduction 493 34.2 Mossbauer Effect 493 34.3 Mossbauer Spectrometer 494 34.4 Nuclides and their Characteristics 496 34.5 Applications Mossbauer Spectroscopy 496 Exercises 500 35. Emission Spectroscopy 503 35.1 Introduction 503 35.2 Types of Spectra 503 35.3 Comparison of Emission Spectroscopy with Flame Photometry 504 35.4 Instrumentation 505 35.5 Applications of Emission Spectroscopy 510 Exercises 512 Part VII: Miscellaneous Instrumental Methods 36. Atomic Absorption Spectroscopy (AAS) 515 36.1 Introduction 515 36.2 The Instrument and Procedure of Estimation 516 36.3 Determination of the Concentration of Element in ppm 519 36.4 Double Beam Atomic Absorption Spectrometer 520 36.5 Atomic Absorption Spectroscopy Versus Flame Emission Sprectroscopy 520 36.6 Interference 521 36.6.1 Chemical Interference 521 36.6.2 Solvent Interference 521 36.7 Advantages of Atomic Absorption Spectroscopy 521 36.8 Applications of Atomic Absorption Spectroscopy 522 36.9 Flameless Atomic Absorption Method 526 Exercises 526 37. Flame Photometry 527 37.1 Introduction 527 37.2 Principle of Flame Photometry 527 37.3 Components of a Flame Photometer 529 Contents 37.4 Selection of Appropriate Solvent for Dissolving the Salt in xix Flame Photometry 533 37.5 Instrument 533 37.5.1 Simple Flame Photometer 533 37.5.2 Internal Standard Flame Photometer 534 37.6 Techniques of Analysis 535 37.6.1 Analysis Involving Calibration Curves 535 37.6.2 Analysis Involving Internal Standard 535 37.6.3 Analysis Involving Addition of Standard 535 37.7 Preparation of Standard Solutions 535 37.8 Interferences in Flame Photometry 536 37.9 Factors Which Affect Intensity of Emitted Radiation 537 37.10 Limitations of Flame Photometry 538 37.11 Applications of Flame Photometry 538 Exercises 539 38. Fluorimetry and Phosphorimetry 541 38.1 Introduction 541 38.2 Fluorescence and Absorption Method 542 38.3 Fluoremetry and Phosphorimetry 542 38.4 Theory 542 38.4.1 Relation between Fluorescence Intensity and Concentration 544 38.5 Types of Transitions in Fluorescence 544 38.6 Instrumentation 545 38.6.1 Instrument for Fluorimetric Analysis 545 38.6.2 Instrument for Phosphorimetric Analysis 547 38.7 Applications of Fluorimetry 548 38.8 Applications of Phosphorimetry 551 38.9 Comparison of Fluorimetry and Phosphorimetry 551 Exercises 552 39. Nephelometric and Turbidimetric Techniques 553 39.1 Introduction 553 39.2 Turbidimetry and Colorimetry 554 39.3 Nephelometry and Fluorimetry 554 39.4 Choice between Nephelometry and Turbidimetry 554 39.5 Basic Principles of Nephelometry and Turbidimetry 554 xx Instrumental Methods of Chemical Analysis 39.6 Instrumentation 556 39.6.1 Turbidimeters 558 39.6.2 Nephelometers 558 39.7 Applications 559 Exercises 562 40. Refractometry and Interferometry 563 40.1 Introduction 563 40.2 Specific Rotation 564 40.3 Molar Refraction 564 40.4 Determination of Refractive index 566 40.5 Applications of Refractometry 567 40.6 Optical Exaltation 568 40.7 Interferometry 569 40.7.1 Applications of Interferometer 571 Exercises 571 41. X-ray Methods 573 41.1 Introduction 573 41.2 Theoretical Consideration 573 41.3 Instrumentation 576 41.4 Instrument for x-ray Absorption 579 41.5 Instrument for x-ray Diffraction 580 41.5.1 Laue Method 580 41.5.2 Rotating Crystal Method 581 41.6 Application of x-ray Diffraction 581 41.7 X-ray Fluorescence 585 41.7.1 Instrumentation 586 41.7.2 Applications of x-ray Fluorescence Spectroscopy 586 Exercises 587 Index 589-592

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BD04537168
  • ISBN
    • 9783031383540
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xxi, 570 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
ページトップへ