Irrationality, transcendence and the circle-squaring problem : an annotated translation of J. H. Lambert's vorläufige kenntnisse and mémoire
Author(s)
Bibliographic Information
Irrationality, transcendence and the circle-squaring problem : an annotated translation of J. H. Lambert's vorläufige kenntnisse and mémoire
(Logic, epistemology, and the unity of science / editors, Shahid Rahman, John Symons, v. 58)
Springer Nature, c2023
- : hardcover
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Foreword by José Ferreirós
Description and Table of Contents
Description
This publication includes an unabridged and annotated translation of two works by Johann Heinrich Lambert (1728-1777) written in the 1760s: Vorlaufige Kenntnisse fur die, so die Quadratur und Rectification des Circuls suchen and Memoire sur quelques proprietes remarquables des quantites transcendentes circulaires et logarithmiques. The translations are accompanied by a contextualised study of each of these works and provide an overview of Lambert's contributions, showing both the background and the influence of his work. In addition, by adopting a biographical approach, it allows readers to better get to know the scientist himself.
Lambert was a highly relevant scientist and polymath in his time, admired by the likes of Kant, who despite having made a wide variety of contributions to different branches of knowledge, later faded into an undeserved secondary place with respect to other scientists of the eighteenth century. In mathematics, in particular, he is famous for his research on non-Euclidean geometries, although he is likely best known for having been the first who proved the irrationality of pi. In his Memoire, he conducted one of the first studies on hyperbolic functions, offered a surprisingly rigorous proof of the irrationality of pi, established for the first time the modern distinction between algebraic and transcendental numbers, and based on such distinction, he conjectured the transcendence of pi and therefore the impossibility of squaring the circle.
Table of Contents
Part I: Antecedents.- Chapter 1. From Geometry to Analysis.- Chapter 2. The situation in the first half of the 18th century. Euler and continued fractions.- Part II: Johann Heinrich Lambert (1728-1777).- Chapter 3. A biographical approach to Johann Heinrich Lambert.- Chapter 4. Outline of Lambert's Memoire (1761/1768).- Chapter 5. An anotated translation of Lambert's Memoire (1761/1768).- Chapter 6. Outine of Lambert's Vorlaufige Kenntnisse (1766/1770).- Chapter 6. An anotated translation of Lambert's Vorlaufige Kenntnisse (1766/1770).- Part III: The influence of Lambert's work and the development of irrational numbers.- Chapter 8. The state of irrationals until the turn of the century.- Chapter 9. Title to be set up.
by "Nielsen BookData"