Microbial bioreactors for industrial molecules

著者
書誌事項

Microbial bioreactors for industrial molecules

edited by Sudhir P. Singh, Santosh Kumar Upadhyay

Wiley, 2023

  • : [hardback]

この図書・雑誌をさがす
注記

Includes bibliographical references and index

内容説明・目次

内容説明

Microbial Bioreactors for Industrial Molecules Harness the planet’s most numerous resources with this comprehensive guide Microorganisms constitute the invisible majority of all living creatures on Earth. They are found virtually everywhere on the planet, including in environments too extreme for any larger organisms to exist. They form a hugely significant resource whose potential value for human society cannot be overlooked. The creation of microorganism- based bioreactors for the industrial production of valuable biomolecules has the potential to revolutionize a range of industries and fields. Microbial Bioreactors for Industrial Molecules provides a comprehensive introduction to these bioresources. It covers all potential approaches to the use of microbial technology and the production of high-value biomolecules for the pharmaceutical, cosmetic, and agricultural industries, among others. The book’s rigorous detail and global, holistic approach to harnessing the power of the planetary microbiome make it an invaluable introduction to this growing area of research and production. Readers will also find: Detailed coverage of basic, applied, biosynthetic, and translational approaches to the use of microbial technology Discussion of industrially produced microbe-borne enzymes including invertase, lipase, keratinase, protease, and more Approaches for using microbial bioreactors to generate biofuels Microbial Bioreactors for Industrial Molecules is essential for scientists and researchers in microbiology and biotechnology, as well as for professionals in the biotech industries and graduate students studying the applications of the life sciences.

目次

List of Contributors xv Preface xxii 1 Microbial Bioreactors: An Introduction 1 Ashish Kumar Singh, Santosh Kumar Upadhyay, and Sudhir P. Singh 1.1 Microbial Bioresources 1 1.2 Microbial Bioresources for the Production of Enzymes 2 1.3 Microbial Bioresources for Therapeutic Application 3 1.4 Microbial Bioresources for Biogenesis 4 1.5 Microbial Fermentation 5 1.6 Microbial Biodegradation 6 1.7 Microbioresources for High- Value Metabolites 7 Acknowledgments 8 References 9 2 Microbial Bioresource for the Production of Marine Enzymes 17 Lorena Pedraza- Segura, Karina Maldonado- Ruiz Esparza, and Ruth Pedroza- Islas 2.1 Introduction 17 2.2 Prokaryotes 17 2.2.1 Amylases 19 2.2.2 Proteases 19 2.2.3 Bactericide 19 2.2.4 l- Asparaginase 19 2.2.5 Carbohydrases 20 2.3 Marine Archaea 20 2.4 Eukaryotes 23 2.4.1 Yeasts 23 2.4.2 Enzymes from Marine- Derived Fungi 24 References 30 3 Lactic Acid Production Using Microbial Bioreactors 39 Juliana Botelho Moreira, Ana Luiza Machado Terra, Whyara Karoline Almeida da Costa, Marciane Magnani, Michele Greque de Morais, and Jorge Alberto Vieira Costa 3.1 Introduction 39 3.2 Microbial Lactic Acid Producers 40 3.2.1 Bacteria 40 3.2.2 Fungi and Yeast 41 3.2.3 Microalgae 41 3.3 Alternative Substrates for Lactic Acid Production 42 3.4 Fermentation Process Parameters 42 3.5 Mode Improvement of Lactic Acid and Reactor Configuration 43 3.6 Challenges 47 3.7 Conclusions 49 Acknowledgments 50 References 50 4 Advancement in the Research and Development of Synbiotic Products 55 Anna María Polanía, Alexis García, and Liliana Londoño 4.1 Introduction 55 4.2 Probiotics, Prebiotics, and Synbiotics 56 4.2.1 Probiotics 56 4.2.2 Requirements and Selection Criteria for Probiotic Strains 57 4.3 Prebiotics 57 4.3.1 Requirements and Selection Criteria for Prebiotic Strains 59 4.4 Synbiotics 60 4.4.1 Synbiotic Selection Criteria 61 4.4.2 Mechanism of Action of Synbiotics 61 4.5 Health Benefits from Synbiotics 63 4.6 Bioreactor Design for Synbiotic Production 65 4.7 Microencapsulation and Nanotechnology to Ensure Their Viability 67 4.8 Nanoparticles 68 4.9 Applications in Various Fields such as Dermatological Diseases, Animal Feed, and Functional Foods 68 4.9.1 Dermatological Diseases 68 4.9.2 Functional Foods 70 4.9.3 Animal Feed 71 4.10 Conclusions 72 References 73 5 Microbial Asparaginase and Its Bioprocessing Significance 81 Susana Calderón- Toledo, Amparo Iris Zavaleta, and Adalberto Pessoa- Junior 5.1 Introduction 81 5.2 Classification of l- Asparaginase 82 5.3 Bioprocessing 82 5.3.1 Sources of microbial l- Asparaginase 82 5.3.2 Upstream Bioprocessing 83 5.3.3 Downstream Bioprocessing 87 5.3.3.1 Protein Concentration 87 5.3.3.2 l- Asparaginase Release 88 5.3.3.3 Chromatography 88 5.4 Scaled Up to Bioreactor 89 5.5 Characterization of l- Asparaginase 90 5.6 Applications of l- Asparaginase 92 5.6.1 Pharmaceutical Industry 92 5.6.2 Food Industry 92 5.7 Conclusions 93 References 93 6 Bioreactor- Scale Strategy for Pectinase Production 103 Javier Ulises Hernández- Beltrán, Carlos Alberto Acosta- Saldívar, Genesis Escobedo- Morales, Nagamani Balagurusamy, and Miriam Paulina Luévanos- Escareño 6.1 Introduction 103 6.2 Pectinase Classification and Origin Sources 104 6.2.1 Pectinases 104 6.2.2 Origin Source of Production of Microbial Pectinase 106 6.3 Substrates Used for Pectinase Production 107 6.4 Fermentation Strategies 107 6.4.1 Solid- State Fermentation 107 6.4.2 Submerged Fermentation 113 6.5 Bioreactor- Scale Strategies 116 6.6 Conclusions 121 References 124 7 Microbes as a Bio- Factory for Polyhydroxyalkanoate Biopolymer Production 131 Daniel Tobías- Soria, Julio Montañez, Iván Salmerón, Alejandro Mendez- Zavala, James Winterburn, and Lourdes Morales- Oyervides 7.1 Introduction 131 7.2 Microbial Polyhydroxyalkanoates as a Novel Alternative to Substitute Petroleum- Derived Plastics 132 7.3 Microbial PHAs Classification, Synthesis, and Producing Microorganisms 133 7.3.1 PHAs Classification 133 7.3.2 Biosynthetic Pathways for PHAs Production 134 7.3.3 PHAs Producing Strains 137 7.3.4 Bacteria as the Main Species for the PHA Production 139 7.3.5 Algae as a Feasible Alternative for PHA Production 140 7.4 Trends and Challenges in the PHAs Synthesis Process 141 7.4.1 Upstream Processing Trends and Challenges 142 7.4.2 Downstream Processing, Trends and Challenges 144 7.5 Process Economics and Perspectives Toward Industrial Implementation 145 7.6 Concluding Remarks 151 References 151 8 Microbial Production of Critical Enzymes of Lignolytic Functions 161 M. Indira, S. Krupanidhi, K. Vidya Prabhakar, T. C. Venkateswarulu, and K. Abraham Peele 8.1 Introduction 161 8.2 Sources of Lignolytic Enzymes 162 8.2.1 Plants 164 8.2.2 Insects 164 8.2.3 Bacteria 165 8.2.4 Fungi 165 8.2.5 Actinomycetes 166 8.2.6 Extremophiles 166 8.3 Lignolytic Enzymes 167 8.3.1 Lignin Peroxidase (EC 1.11.1.14) 167 8.3.2 Manganese Peroxidase (EC 1.11.1.13) 168 8.3.3 Versatile Peroxidase (EC 1.11.1.16) 168 8.3.4 Dye Decolorizing Peroxidases (DyPs) (EC 1.11.1.19) 169 8.3.5 Laccases (EC 1.10.3.2) 169 8.3.6 Feruloyl Esterase (EC.3.1.1.73) 170 8.3.7 Aryl Alcohol Oxidase (EC 1.1.3.7) 170 8.3.8 Pyranose- 2- Oxidase (EC 1.1.3.10) 171 8.3.9 Vanillyl Alcohol Oxidase (EC 1.1.3.38) 171 8.3.10 Quinone Reductase (EC 1.6.5.5) 171 8.4 Microbial Production of Lignolytic Enzymes 171 8.5 Mechanism of Action of Lignolytic Enzymes 175 8.6 Conclusions 177 Acknowledgments 177 References 178 9 Microbial Bioreactors for Biofuels 189 Paulo Renato Souza de Oliveira, Allana Katiussya Silva Pereira, Iara Nobre Carmona, and Ananias Francisco Dias Júnior 9.1 Introduction 189 9.2 General Classification of Bioreactor 190 9.3 Liquid- Phase Bioreactor 190 9.3.1 Cell- Free 190 9.3.1.1 Mechanically Stirred 190 9.3.1.2 Pneumatically Stirred 190 9.3.2 Immobilized Cell 191 9.4 Reactors for Solid- State Cultures 192 9.5 Bioreactor Operation Mode 193 9.6 Biofuels 194 9.6.1 Bioethanol 194 9.6.2 Biodiesel 196 9.6.3 Butanol 197 9.6.4 Biogas and Methane 198 9.6.5 Hydrogen 199 9.6.6 Biohythane 200 9.7 Considerations and Future Perspectives 201 References 201 10 Potential Microbial Bioresources for Functional Sugar Molecules 211 Satya Narayan Patel, Sweety Sharma, Ashish Kumar Singh, and Sudhir P. Singh 10.1 Introduction 211 10.2 D- Allulose 212 10.3 D- Tagatose 215 10.4 Trehalose 217 10.5 Turanose 218 10.6 Trehalulose 221 10.7 D- Allose 222 10.8 D- Talose 224 10.9 Conclusions 224 Acknowledgment 225 References 225 11 Microbial Production of Bioactive Peptides 237 Adriano Gennari, Fernanda Leonhardt, Graziela Barbosa Paludo, Daniel Neutzling Lehn, Gaby Renard, Giandra Volpato, and Claucia Fernanda Volken de Souza 11.1 Introduction 237 11.2 Microbial Production of Peptides with Antioxidant Activity 238 11.3 Microbial Production of Peptides with Antimicrobial Activity 239 11.4 Microbial Production of Peptides with Antihypertensive Activity 240 11.5 Microbial Production of Peptides with Antidiabetic Activity 242 11.6 Microbial Production of Peptides with Immunomodulatory Activities 243 11.7 Microbial Production of Peptides with Antitumoral Activity 243 11.8 Microbial Production of Peptides with Opioid Activity 247 11.9 Microbial Production of Peptides with Antithrombotic Activity 248 11.10 Production of Recombinant Peptides in Microbial Expression Systems 249 11.11 Purification and Identification of Microbial Bioactive Peptides 251 11.12 Conclusions and Perspectives 252 References 253 12 Trends in Microbial Sources of Oils, Fats, and Fatty Acids for Industrial Use 261 Alaa Kareem Niamah, Deepak Kumar Verma, Shayma Thyab Gddoa Al- Sahlany, Soubhagya Tripathy, Smita Singh, Nihir Shah, Ami R. Patel, Mamta Thakur, Gemilang Lara Utama, Mónica L. Chávez- González, and Cristobal Noe Aguilar 12.1 Introduction 261 12.2 Microbial Sources 263 12.2.1 Microalgal Sources 264 12.2.2 Bacterial Sources 266 12.2.3 Fungal and Yeast Sources 267 12.3 Application in Food and Health 269 12.4 Opportunities and Prospective Future 270 12.5 Conclusion 271 References 271 13 Microbial Bioreactors for Secondary Metabolite Production 275 Luis V. Rodríguez- Durán, Mariela R. Michel, Alejandra Pichardo, and Pedro Aguilar- Zárate 13.1 Introduction 275 13.2 Design of Bioreactors 276 13.3 Types of Bioreactors for Secondary Metabolite Production 278 13.3.1 Stirred Tank Bioreactor (STB) 278 13.3.2 Bubble Column 280 13.3.3 Air- Lift 282 13.3.4 Biofilm Bioreactor 283 13.3.5 Solid- State Fermentation (SSF) Bioreactors 285 13.3.6 Tray Bioreactor 286 13.3.7 Packed Bed Bioreactor 287 13.3.8 Stirred and Rotating Drum Bioreactor 288 13.4 Conclusion 289 Acknowledgment 289 References 289 14 Microbial Cell Factories for Nitrilase Production and Its Applications 297 Neerja Thakur, Vinay Kumar, and Shashi Kant Bhatia 14.1 Introduction 297 14.2 Nitrilase Categorization, Sources, Metabolism, and Production Process 298 14.2.1 Nitrilase Categorization 298 14.2.2 Nitrilase Sources 298 14.2.3 Nitrilase in the Metabolism of Nitriles 298 14.2.4 Isolation and Screening of Nitrilase- Producing Microorganisms 299 14.2.5 Cultivation of Nitrilase- Producing Microbes 299 14.2.6 Nitrilase Production in Bioreactor 301 14.2.6.1 Factors Affecting Nitrilase Production in a Bioreactor 301 14.3 Nitrilase in the Biotransformation of Nitriles 302 14.3.1 Aliphatic Acids 305 14.3.1.1 Acrylic Acid 305 14.3.1.2 Glycolic Acid 305 14.3.2 Aromatic Acids 305 14.3.2.1 Nicotinic Acid 305 14.3.2.2 Isonicotinic Acid 306 14.3.2.3 Benzoic Acid 306 14.3.3 Arylacetic Acids 306 14.3.3.1 Mandelic Acid 306 14.3.3.2 Phenylacetic Acid 307 14.4 Conclusion 307 References 307 15 Chemistry and Sources of Lactase Enzyme with an Emphasis on Microbial Biotransformation in Milk 315 Alaa Kareem Niamah, Shayma Thyab Gddoa Al- Sahlany, Deepak Kumar Verma, Smita Singh, Soubhagya Tripathy, Deepika Baranwal, Nihir Shah, Ami R. Patel, Mamta Thakur, Gemilang Lara Utama, Mónica L. Chávez- González, and Cristobal Noe Aguilar 15.1 Introduction 315 15.2 Lactase Enzyme 316 15.3 Sources of Lactase 318 15.3.1 Plants 318 15.3.2 Bacteria 319 15.3.3 Yeasts 321 15.3.4 Molds 322 15.4 Microbial Biotransformation of Lactase Enzyme 322 15.4.1 Improvement of Microbial Strains 322 15.4.2 Galactooligosaccharide Synthesis and Transglycosylation 324 15.4.3 Lactose Intolerance 325 15.5 Conclusion 326 References 327 16 Microbial Biogas Production: Challenges and Opportunities 333 Diana B. Muñiz- Márquez, Christian Iván Cano- Gómez, Jorge Enrique Wong- Paz, Victor Emmanuel Balderas- Hernández, and Fabiola Veana 16.1 Introduction 333 16.2 Generalities of Biogas Production: the Process and Its Yields 334 16.3 Feedstocks Used in Biogas Production and Their Characteristics 336 16.4 Microbial Biodiversity in Biogas Production 337 16.4.1 Generalities 337 16.4.2 Anaerobic Fungi in Biogas Production 338 16.4.3 Anaerobic Bacteria in Biogas Production 340 16.4.4 Methanogenic Archaeal and Algae in Biogas Production 340 16.5 The Role of the Enzymes in Biogas Production 341 16.6 Challenges and Opportunities in Biogas Production 344 16.6.1 Challenges for Biogas Production 344 16.6.2 Opportunities for Biogas Production 346 References 347 17 Molecular Farming and Anticancer Vaccine: Current Opportunities and Openings 355 Yashwant Kumar Ratre, Arundhati Mehta, Sapnita Shinde, Vibha Sinha, Vivek Kumar Soni, Subash Chandra Sonkar, Dhananjay Shukla, and Naveen Kumar Vishvakarma 17.1 Introduction 355 17.2 Vaccines and the Possibility in Noncommunicable Diseases 356 17.3 Vaccine Production 357 17.3.1 Cancer Vaccine 358 17.4 Types of Cancer Vaccine 359 17.5 Microbial Production of Anticancer Vaccine: Challenges and Opportunities 361 17.5.1 Yeast- Based Cancer Vaccine (YBCV) 362 17.5.2 Bacteria- Based Cancer Vaccine (BBCV) 364 17.6 Conclusion 365 References 366 18 Microbial Bioreactors at Different Scales for the Alginate Production by Azotobacter vinelandii 375 Belén Ponce, Viviana Urtuvia, Tania Castillo, Daniel Segura, Carlos Peña, and Alvaro Díaz- Barrera 18.1 Introduction 375 18.2 Bacterial Alginate 376 18.2.1 Compositions and Structures 376 18.2.2 Applications 376 18.3 Alginate Biosynthesis and Genetic Regulation 376 18.4 Production of Bacterial Alginate on a Bioreactor Scale 380 18.4.1 Cultivation Modality for Alginate Production 380 18.4.2 Influence of Oxygen on Alginate Production 382 18.4.3 Influence of Cultivation Modality on the Molecular Weight of Alginate 384 18.5 Chemical Characterization of Alginate Quality 384 18.5.1 Scale- up of Alginate Production 385 18.6 Prospects and Conclusions 388 Acknowledgment 390 References 390 19 Environment- Friendly Microbial Bioremediation 397 Areej Shahbaz, Nazim Hussain, Tehreem Mahmood, Mubeen Ashraf, and Nida Khaliq 19.1 Introduction 397 19.2 Principle of Bioremediation 400 19.3 Types of Bioremediations 402 19.3.1 Biostimulation 402 19.3.2 Bioattenuation 402 19.3.3 Bioaugmentation 403 19.3.4 Genetically Engineered Microorganisms (GEMs) 403 19.4 Factors Affecting Microbial Bioremediation 404 19.4.1 Biological Factors 405 19.4.2 Environmental Factors 405 19.4.2.1 Availability of Nutrients 405 19.4.2.2 Temperature and pH 406 19.4.2.3 Concentration of Oxygen and Moisture Content 406 19.4.2.4 Site Characterization and Selection 406 19.4.2.5 Metal Ions and Toxic Compounds 407 19.5 Bioremediation Techniques 407 19.6 Methods for Ex Situ Bioremediation 408 19.6.1 Solid Phase Treatment 408 19.6.1.1 Slurry Phase Bioremediation 409 19.6.1.2 In Situ Bioremediation 409 19.6.2 Engineered Bioremediation 409 19.6.3 Intrinsic Bioremediation 410 19.7 Bioremediation Using Microbial Enzymes 410 19.7.1 Laccases 411 19.7.2 Lipases 411 19.7.3 Proteases 411 19.7.4 Peroxidases 411 19.7.5 Hydrolytic Enzymes 412 19.7.6 Oxidoreductases 412 19.8 Bioremediation Prospects 412 19.9 Future Prospective 414 19.10 Conclusion 415 References 415 20 Microbial Bioresource for Plastic- Degrading Enzymes 421 Ayodeji Amobonye, Christiana Eleojo Aruwa, and Santhosh Pillai 20.1 Introduction 421 20.2 Classification of Plastics: Biobased, Biodegradable, and Fossil- Based Plastics 423 20.2.1 Fossil- Based Plastics 423 20.2.2 Biobased Plastics 423 20.2.3 Biodegradable Plastics 424 20.3 General Mechanism of Plastic Biodegradation 424 20.4 Microbial Sources of Plastic- Degrading Enzymes 426 20.4.1 Actinomycetes 426 20.4.2 Algae 427 20.4.3 Bacteria 427 20.4.4 Fungi 428 20.5 Biotechnological Strategies for Identifying/Improving Microbial Enzymes and Their Sources for Plastic Biodegradation 429 20.5.1 Conventional Culturing Approach 429 20.5.2 Metagenomics 430 20.5.3 Recombinant Technology 431 20.5.4 Protein Engineering 431 20.6 Conclusion and Future Perspectives 432 References 434 21 Strategies, Trends, and Technological Advancements in Microbial Bioreactor System for Probiotic Products 443 Soubhagya Tripathy, Ami R. Patel, Deepak Kumar Verma, Smita Singh, Gemilang Lara Utama, Mamta Thakur, Alaa Kareem Niamah, Nihir Shah, Shayma Thyab Gddoa Al- Sahlany, Prem Prakash Srivastav, Mónica L. Chávez- González, and Cristobal Noe Aguilar 21.1 Introduction 443 21.2 Bioreactors and Production of Probiotics 444 21.2.1 Conventional Batch Bioreactor System 447 21.2.2 Membrane Bioreactor System 449 21.2.3 Co- culture Fermentation 452 21.2.4 Recent Methods for Producing Multiple Probiotic Strains 454 21.3 Strategies Employed for Harvesting and Drying Probiotic Cells 455 21.4 Final Remarks and Possible Directions for the Future 456 Abbreviations 457 References 457 22 Microbial Bioproduction of Antiaging Molecules 465 Ankita Dua, Aeshna Nigam, Anjali Saxena, Gauri Garg Dhingra, and Roshan Kumar 22.1 Introduction 465 22.2 The Aging Process: An Overview 466 22.3 Human Health and the Aging Gut Microbiome 468 22.4 The Antiaging Bioproducts from Microbes 469 22.4.1 Bacteria 469 22.4.2 Fungi 471 22.4.3 Algae 471 22.5 The Impact of Microbial Bioproducts on Gut Diversity 472 22.6 Microbial Bioproduction of Extremolytes 472 22.7 The Role of Antiaging and Antioxidant Molecules 473 22.8 Conclusions 480 References 480 Index 487

「Nielsen BookData」 より

詳細情報
ページトップへ