Microbial bioreactors for industrial molecules
著者
書誌事項
Microbial bioreactors for industrial molecules
Wiley, 2023
- : [hardback]
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Microbial Bioreactors for Industrial Molecules Harness the planet’s most numerous resources with this comprehensive guide
Microorganisms constitute the invisible majority of all living creatures on Earth. They are found virtually everywhere on the planet, including in environments too extreme for any larger organisms to exist. They form a hugely significant resource whose potential value for human society cannot be overlooked. The creation of microorganism- based bioreactors for the industrial production of valuable biomolecules has the potential to revolutionize a range of industries and fields.
Microbial Bioreactors for Industrial Molecules provides a comprehensive introduction to these bioresources. It covers all potential approaches to the use of microbial technology and the production of high-value biomolecules for the pharmaceutical, cosmetic, and agricultural industries, among others. The book’s rigorous detail and global, holistic approach to harnessing the power of the planetary microbiome make it an invaluable introduction to this growing area of research and production.
Readers will also find:
Detailed coverage of basic, applied, biosynthetic, and translational approaches to the use of microbial technology
Discussion of industrially produced microbe-borne enzymes including invertase, lipase, keratinase, protease, and more
Approaches for using microbial bioreactors to generate biofuels
Microbial Bioreactors for Industrial Molecules is essential for scientists and researchers in microbiology and biotechnology, as well as for professionals in the biotech industries and graduate students studying the applications of the life sciences.
目次
List of Contributors xv
Preface xxii
1 Microbial Bioreactors: An Introduction 1
Ashish Kumar Singh, Santosh Kumar Upadhyay, and Sudhir P. Singh
1.1 Microbial Bioresources 1
1.2 Microbial Bioresources for the Production of Enzymes 2
1.3 Microbial Bioresources for Therapeutic Application 3
1.4 Microbial Bioresources for Biogenesis 4
1.5 Microbial Fermentation 5
1.6 Microbial Biodegradation 6
1.7 Microbioresources for High- Value Metabolites 7
Acknowledgments 8
References 9
2 Microbial Bioresource for the Production of Marine Enzymes 17
Lorena Pedraza- Segura, Karina Maldonado- Ruiz Esparza, and Ruth Pedroza- Islas
2.1 Introduction 17
2.2 Prokaryotes 17
2.2.1 Amylases 19
2.2.2 Proteases 19
2.2.3 Bactericide 19
2.2.4 l- Asparaginase 19
2.2.5 Carbohydrases 20
2.3 Marine Archaea 20
2.4 Eukaryotes 23
2.4.1 Yeasts 23
2.4.2 Enzymes from Marine- Derived Fungi 24
References 30
3 Lactic Acid Production Using Microbial Bioreactors 39
Juliana Botelho Moreira, Ana Luiza Machado Terra, Whyara Karoline Almeida da Costa, Marciane Magnani, Michele Greque de Morais, and Jorge Alberto Vieira Costa
3.1 Introduction 39
3.2 Microbial Lactic Acid Producers 40
3.2.1 Bacteria 40
3.2.2 Fungi and Yeast 41
3.2.3 Microalgae 41
3.3 Alternative Substrates for Lactic Acid Production 42
3.4 Fermentation Process Parameters 42
3.5 Mode Improvement of Lactic Acid and Reactor Configuration 43
3.6 Challenges 47
3.7 Conclusions 49
Acknowledgments 50
References 50
4 Advancement in the Research and Development of Synbiotic Products 55
Anna María Polanía, Alexis García, and Liliana Londoño
4.1 Introduction 55
4.2 Probiotics, Prebiotics, and Synbiotics 56
4.2.1 Probiotics 56
4.2.2 Requirements and Selection Criteria for Probiotic Strains 57
4.3 Prebiotics 57
4.3.1 Requirements and Selection Criteria for Prebiotic Strains 59
4.4 Synbiotics 60
4.4.1 Synbiotic Selection Criteria 61
4.4.2 Mechanism of Action of Synbiotics 61
4.5 Health Benefits from Synbiotics 63
4.6 Bioreactor Design for Synbiotic Production 65
4.7 Microencapsulation and Nanotechnology to Ensure Their Viability 67
4.8 Nanoparticles 68
4.9 Applications in Various Fields such as Dermatological Diseases, Animal Feed, and Functional Foods 68
4.9.1 Dermatological Diseases 68
4.9.2 Functional Foods 70
4.9.3 Animal Feed 71
4.10 Conclusions 72
References 73
5 Microbial Asparaginase and Its Bioprocessing Significance 81
Susana Calderón- Toledo, Amparo Iris Zavaleta, and Adalberto Pessoa- Junior
5.1 Introduction 81
5.2 Classification of l- Asparaginase 82
5.3 Bioprocessing 82
5.3.1 Sources of microbial l- Asparaginase 82
5.3.2 Upstream Bioprocessing 83
5.3.3 Downstream Bioprocessing 87
5.3.3.1 Protein Concentration 87
5.3.3.2 l- Asparaginase Release 88
5.3.3.3 Chromatography 88
5.4 Scaled Up to Bioreactor 89
5.5 Characterization of l- Asparaginase 90
5.6 Applications of l- Asparaginase 92
5.6.1 Pharmaceutical Industry 92
5.6.2 Food Industry 92
5.7 Conclusions 93
References 93
6 Bioreactor- Scale Strategy for Pectinase Production 103
Javier Ulises Hernández- Beltrán, Carlos Alberto Acosta- Saldívar, Genesis Escobedo- Morales, Nagamani Balagurusamy, and Miriam Paulina Luévanos- Escareño
6.1 Introduction 103
6.2 Pectinase Classification and Origin Sources 104
6.2.1 Pectinases 104
6.2.2 Origin Source of Production of Microbial Pectinase 106
6.3 Substrates Used for Pectinase Production 107
6.4 Fermentation Strategies 107
6.4.1 Solid- State Fermentation 107
6.4.2 Submerged Fermentation 113
6.5 Bioreactor- Scale Strategies 116
6.6 Conclusions 121
References 124
7 Microbes as a Bio- Factory for Polyhydroxyalkanoate Biopolymer Production 131
Daniel Tobías- Soria, Julio Montañez, Iván Salmerón, Alejandro Mendez- Zavala, James Winterburn, and Lourdes Morales- Oyervides
7.1 Introduction 131
7.2 Microbial Polyhydroxyalkanoates as a Novel Alternative to Substitute Petroleum- Derived Plastics 132
7.3 Microbial PHAs Classification, Synthesis, and Producing Microorganisms 133
7.3.1 PHAs Classification 133
7.3.2 Biosynthetic Pathways for PHAs Production 134
7.3.3 PHAs Producing Strains 137
7.3.4 Bacteria as the Main Species for the PHA Production 139
7.3.5 Algae as a Feasible Alternative for PHA Production 140
7.4 Trends and Challenges in the PHAs Synthesis Process 141
7.4.1 Upstream Processing Trends and Challenges 142
7.4.2 Downstream Processing, Trends and Challenges 144
7.5 Process Economics and Perspectives Toward Industrial Implementation 145
7.6 Concluding Remarks 151
References 151
8 Microbial Production of Critical Enzymes of Lignolytic Functions 161
M. Indira, S. Krupanidhi, K. Vidya Prabhakar, T. C. Venkateswarulu, and K. Abraham Peele
8.1 Introduction 161
8.2 Sources of Lignolytic Enzymes 162
8.2.1 Plants 164
8.2.2 Insects 164
8.2.3 Bacteria 165
8.2.4 Fungi 165
8.2.5 Actinomycetes 166
8.2.6 Extremophiles 166
8.3 Lignolytic Enzymes 167
8.3.1 Lignin Peroxidase (EC 1.11.1.14) 167
8.3.2 Manganese Peroxidase (EC 1.11.1.13) 168
8.3.3 Versatile Peroxidase (EC 1.11.1.16) 168
8.3.4 Dye Decolorizing Peroxidases (DyPs) (EC 1.11.1.19) 169
8.3.5 Laccases (EC 1.10.3.2) 169
8.3.6 Feruloyl Esterase (EC.3.1.1.73) 170
8.3.7 Aryl Alcohol Oxidase (EC 1.1.3.7) 170
8.3.8 Pyranose- 2- Oxidase (EC 1.1.3.10) 171
8.3.9 Vanillyl Alcohol Oxidase (EC 1.1.3.38) 171
8.3.10 Quinone Reductase (EC 1.6.5.5) 171
8.4 Microbial Production of Lignolytic Enzymes 171
8.5 Mechanism of Action of Lignolytic Enzymes 175
8.6 Conclusions 177
Acknowledgments 177
References 178
9 Microbial Bioreactors for Biofuels 189
Paulo Renato Souza de Oliveira, Allana Katiussya Silva Pereira, Iara Nobre Carmona, and Ananias Francisco Dias Júnior
9.1 Introduction 189
9.2 General Classification of Bioreactor 190
9.3 Liquid- Phase Bioreactor 190
9.3.1 Cell- Free 190
9.3.1.1 Mechanically Stirred 190
9.3.1.2 Pneumatically Stirred 190
9.3.2 Immobilized Cell 191
9.4 Reactors for Solid- State Cultures 192
9.5 Bioreactor Operation Mode 193
9.6 Biofuels 194
9.6.1 Bioethanol 194
9.6.2 Biodiesel 196
9.6.3 Butanol 197
9.6.4 Biogas and Methane 198
9.6.5 Hydrogen 199
9.6.6 Biohythane 200
9.7 Considerations and Future Perspectives 201
References 201
10 Potential Microbial Bioresources for Functional Sugar Molecules 211
Satya Narayan Patel, Sweety Sharma, Ashish Kumar Singh, and Sudhir P. Singh
10.1 Introduction 211
10.2 D- Allulose 212
10.3 D- Tagatose 215
10.4 Trehalose 217
10.5 Turanose 218
10.6 Trehalulose 221
10.7 D- Allose 222
10.8 D- Talose 224
10.9 Conclusions 224
Acknowledgment 225
References 225
11 Microbial Production of Bioactive Peptides 237
Adriano Gennari, Fernanda Leonhardt, Graziela Barbosa Paludo, Daniel Neutzling Lehn, Gaby Renard, Giandra Volpato, and Claucia Fernanda Volken de Souza
11.1 Introduction 237
11.2 Microbial Production of Peptides with Antioxidant Activity 238
11.3 Microbial Production of Peptides with Antimicrobial Activity 239
11.4 Microbial Production of Peptides with Antihypertensive Activity 240
11.5 Microbial Production of Peptides with Antidiabetic Activity 242
11.6 Microbial Production of Peptides with Immunomodulatory Activities 243
11.7 Microbial Production of Peptides with Antitumoral Activity 243
11.8 Microbial Production of Peptides with Opioid Activity 247
11.9 Microbial Production of Peptides with Antithrombotic Activity 248
11.10 Production of Recombinant Peptides in Microbial Expression Systems 249
11.11 Purification and Identification of Microbial Bioactive Peptides 251
11.12 Conclusions and Perspectives 252
References 253
12 Trends in Microbial Sources of Oils, Fats, and Fatty Acids for Industrial Use 261
Alaa Kareem Niamah, Deepak Kumar Verma, Shayma Thyab Gddoa Al- Sahlany, Soubhagya Tripathy, Smita Singh, Nihir Shah, Ami R. Patel, Mamta Thakur, Gemilang Lara Utama, Mónica L. Chávez- González, and Cristobal Noe Aguilar
12.1 Introduction 261
12.2 Microbial Sources 263
12.2.1 Microalgal Sources 264
12.2.2 Bacterial Sources 266
12.2.3 Fungal and Yeast Sources 267
12.3 Application in Food and Health 269
12.4 Opportunities and Prospective Future 270
12.5 Conclusion 271
References 271
13 Microbial Bioreactors for Secondary Metabolite Production 275
Luis V. Rodríguez- Durán, Mariela R. Michel, Alejandra Pichardo, and Pedro Aguilar- Zárate
13.1 Introduction 275
13.2 Design of Bioreactors 276
13.3 Types of Bioreactors for Secondary Metabolite Production 278
13.3.1 Stirred Tank Bioreactor (STB) 278
13.3.2 Bubble Column 280
13.3.3 Air- Lift 282
13.3.4 Biofilm Bioreactor 283
13.3.5 Solid- State Fermentation (SSF) Bioreactors 285
13.3.6 Tray Bioreactor 286
13.3.7 Packed Bed Bioreactor 287
13.3.8 Stirred and Rotating Drum Bioreactor 288
13.4 Conclusion 289
Acknowledgment 289
References 289
14 Microbial Cell Factories for Nitrilase Production and Its Applications 297
Neerja Thakur, Vinay Kumar, and Shashi Kant Bhatia
14.1 Introduction 297
14.2 Nitrilase Categorization, Sources, Metabolism, and Production Process 298
14.2.1 Nitrilase Categorization 298
14.2.2 Nitrilase Sources 298
14.2.3 Nitrilase in the Metabolism of Nitriles 298
14.2.4 Isolation and Screening of Nitrilase- Producing Microorganisms 299
14.2.5 Cultivation of Nitrilase- Producing Microbes 299
14.2.6 Nitrilase Production in Bioreactor 301
14.2.6.1 Factors Affecting Nitrilase Production in a Bioreactor 301
14.3 Nitrilase in the Biotransformation of Nitriles 302
14.3.1 Aliphatic Acids 305
14.3.1.1 Acrylic Acid 305
14.3.1.2 Glycolic Acid 305
14.3.2 Aromatic Acids 305
14.3.2.1 Nicotinic Acid 305
14.3.2.2 Isonicotinic Acid 306
14.3.2.3 Benzoic Acid 306
14.3.3 Arylacetic Acids 306
14.3.3.1 Mandelic Acid 306
14.3.3.2 Phenylacetic Acid 307
14.4 Conclusion 307
References 307
15 Chemistry and Sources of Lactase Enzyme with an Emphasis on Microbial Biotransformation in Milk 315
Alaa Kareem Niamah, Shayma Thyab Gddoa Al- Sahlany, Deepak Kumar Verma, Smita Singh, Soubhagya Tripathy, Deepika Baranwal, Nihir Shah, Ami R. Patel, Mamta Thakur, Gemilang Lara Utama, Mónica L. Chávez- González, and Cristobal Noe Aguilar
15.1 Introduction 315
15.2 Lactase Enzyme 316
15.3 Sources of Lactase 318
15.3.1 Plants 318
15.3.2 Bacteria 319
15.3.3 Yeasts 321
15.3.4 Molds 322
15.4 Microbial Biotransformation of Lactase Enzyme 322
15.4.1 Improvement of Microbial Strains 322
15.4.2 Galactooligosaccharide Synthesis and Transglycosylation 324
15.4.3 Lactose Intolerance 325
15.5 Conclusion 326
References 327
16 Microbial Biogas Production: Challenges and Opportunities 333
Diana B. Muñiz- Márquez, Christian Iván Cano- Gómez, Jorge Enrique Wong- Paz, Victor Emmanuel Balderas- Hernández, and Fabiola Veana
16.1 Introduction 333
16.2 Generalities of Biogas Production: the Process and Its Yields 334
16.3 Feedstocks Used in Biogas Production and Their Characteristics 336
16.4 Microbial Biodiversity in Biogas Production 337
16.4.1 Generalities 337
16.4.2 Anaerobic Fungi in Biogas Production 338
16.4.3 Anaerobic Bacteria in Biogas Production 340
16.4.4 Methanogenic Archaeal and Algae in Biogas Production 340
16.5 The Role of the Enzymes in Biogas Production 341
16.6 Challenges and Opportunities in Biogas Production 344
16.6.1 Challenges for Biogas Production 344
16.6.2 Opportunities for Biogas Production 346
References 347
17 Molecular Farming and Anticancer Vaccine: Current Opportunities and Openings 355
Yashwant Kumar Ratre, Arundhati Mehta, Sapnita Shinde, Vibha Sinha, Vivek Kumar Soni, Subash Chandra Sonkar, Dhananjay Shukla, and Naveen Kumar Vishvakarma
17.1 Introduction 355
17.2 Vaccines and the Possibility in Noncommunicable Diseases 356
17.3 Vaccine Production 357
17.3.1 Cancer Vaccine 358
17.4 Types of Cancer Vaccine 359
17.5 Microbial Production of Anticancer Vaccine: Challenges and Opportunities 361
17.5.1 Yeast- Based Cancer Vaccine (YBCV) 362
17.5.2 Bacteria- Based Cancer Vaccine (BBCV) 364
17.6 Conclusion 365
References 366
18 Microbial Bioreactors at Different Scales for the Alginate Production by Azotobacter vinelandii 375
Belén Ponce, Viviana Urtuvia, Tania Castillo, Daniel Segura, Carlos Peña, and Alvaro Díaz- Barrera
18.1 Introduction 375
18.2 Bacterial Alginate 376
18.2.1 Compositions and Structures 376
18.2.2 Applications 376
18.3 Alginate Biosynthesis and Genetic Regulation 376
18.4 Production of Bacterial Alginate on a Bioreactor Scale 380
18.4.1 Cultivation Modality for Alginate Production 380
18.4.2 Influence of Oxygen on Alginate Production 382
18.4.3 Influence of Cultivation Modality on the Molecular Weight of Alginate 384
18.5 Chemical Characterization of Alginate Quality 384
18.5.1 Scale- up of Alginate Production 385
18.6 Prospects and Conclusions 388
Acknowledgment 390
References 390
19 Environment- Friendly Microbial Bioremediation 397
Areej Shahbaz, Nazim Hussain, Tehreem Mahmood, Mubeen Ashraf, and Nida Khaliq
19.1 Introduction 397
19.2 Principle of Bioremediation 400
19.3 Types of Bioremediations 402
19.3.1 Biostimulation 402
19.3.2 Bioattenuation 402
19.3.3 Bioaugmentation 403
19.3.4 Genetically Engineered Microorganisms (GEMs) 403
19.4 Factors Affecting Microbial Bioremediation 404
19.4.1 Biological Factors 405
19.4.2 Environmental Factors 405
19.4.2.1 Availability of Nutrients 405
19.4.2.2 Temperature and pH 406
19.4.2.3 Concentration of Oxygen and Moisture Content 406
19.4.2.4 Site Characterization and Selection 406
19.4.2.5 Metal Ions and Toxic Compounds 407
19.5 Bioremediation Techniques 407
19.6 Methods for Ex Situ Bioremediation 408
19.6.1 Solid Phase Treatment 408
19.6.1.1 Slurry Phase Bioremediation 409
19.6.1.2 In Situ Bioremediation 409
19.6.2 Engineered Bioremediation 409
19.6.3 Intrinsic Bioremediation 410
19.7 Bioremediation Using Microbial Enzymes 410
19.7.1 Laccases 411
19.7.2 Lipases 411
19.7.3 Proteases 411
19.7.4 Peroxidases 411
19.7.5 Hydrolytic Enzymes 412
19.7.6 Oxidoreductases 412
19.8 Bioremediation Prospects 412
19.9 Future Prospective 414
19.10 Conclusion 415
References 415
20 Microbial Bioresource for Plastic- Degrading Enzymes 421
Ayodeji Amobonye, Christiana Eleojo Aruwa, and Santhosh Pillai
20.1 Introduction 421
20.2 Classification of Plastics: Biobased, Biodegradable, and Fossil- Based Plastics 423
20.2.1 Fossil- Based Plastics 423
20.2.2 Biobased Plastics 423
20.2.3 Biodegradable Plastics 424
20.3 General Mechanism of Plastic Biodegradation 424
20.4 Microbial Sources of Plastic- Degrading Enzymes 426
20.4.1 Actinomycetes 426
20.4.2 Algae 427
20.4.3 Bacteria 427
20.4.4 Fungi 428
20.5 Biotechnological Strategies for Identifying/Improving Microbial Enzymes and Their Sources for Plastic Biodegradation 429
20.5.1 Conventional Culturing Approach 429
20.5.2 Metagenomics 430
20.5.3 Recombinant Technology 431
20.5.4 Protein Engineering 431
20.6 Conclusion and Future Perspectives 432
References 434
21 Strategies, Trends, and Technological Advancements in Microbial Bioreactor System for Probiotic Products 443
Soubhagya Tripathy, Ami R. Patel, Deepak Kumar Verma, Smita Singh, Gemilang Lara Utama, Mamta Thakur, Alaa Kareem Niamah, Nihir Shah, Shayma Thyab Gddoa Al- Sahlany, Prem Prakash Srivastav, Mónica L. Chávez- González, and Cristobal Noe Aguilar
21.1 Introduction 443
21.2 Bioreactors and Production of Probiotics 444
21.2.1 Conventional Batch Bioreactor System 447
21.2.2 Membrane Bioreactor System 449
21.2.3 Co- culture Fermentation 452
21.2.4 Recent Methods for Producing Multiple Probiotic Strains 454
21.3 Strategies Employed for Harvesting and Drying Probiotic Cells 455
21.4 Final Remarks and Possible Directions for the Future 456
Abbreviations 457
References 457
22 Microbial Bioproduction of Antiaging Molecules 465
Ankita Dua, Aeshna Nigam, Anjali Saxena, Gauri Garg Dhingra, and Roshan Kumar
22.1 Introduction 465
22.2 The Aging Process: An Overview 466
22.3 Human Health and the Aging Gut Microbiome 468
22.4 The Antiaging Bioproducts from Microbes 469
22.4.1 Bacteria 469
22.4.2 Fungi 471
22.4.3 Algae 471
22.5 The Impact of Microbial Bioproducts on Gut Diversity 472
22.6 Microbial Bioproduction of Extremolytes 472
22.7 The Role of Antiaging and Antioxidant Molecules 473
22.8 Conclusions 480
References 480
Index 487
「Nielsen BookData」 より