Spline functions and multivariate interpolations
著者
書誌事項
Spline functions and multivariate interpolations
(Mathematics and its applications, v. 248)
Kluwer Academic Publishers, c2010
- : pbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 265-272
Includes index
内容説明・目次
内容説明
Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given.
目次
Series Editor's Preface. Preface. 1. Interpolation by Algebraic Polynomials. 2. The Space of Splines. 3. B-Splines. 4. Interpolation by Spline Functions. 5. Natural Spline Functions. 6. Perfect Splines. 7. Monosplines. 8. Periodic Splines. 9. Multivariate B-Splines and Truncated Powers. 10. Multivariate Spline Functions and Divided Differences. 11. Box Splines. 12. Multivariate Mean Value Interpolation. 13. Multivariate Polynomial Interpolations arising by Hyperplanes. 14. Multivariate Pointwise Interpolation. References. Index. Notation.
「Nielsen BookData」 より