Introduction to flat panel displays
著者
書誌事項
Introduction to flat panel displays
(Wiley-SID series in display technology)
Wiley, 2020
2nd ed
- : hardback
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other authors: I-Chun Cheng, Hong Hua, Shin-Tson Wu
Includes bibliographical references and index
内容説明・目次
内容説明
THE PERFECT GUIDE TO FLAT PANEL DISPLAYS FOR RESEARCHERS AND INDUSTRY PERSONNEL ALIKE
Introduction to Flat Panel Displays, 2nd Edition is the leading introductory reference to state-of-the-art flat panel display technologies. The 2nd edition has been newly updated to include the latest developments for high pixel resolution support, high brightness, improved contrast settings, and low power consumption. The 2nd edition has also been updated to include the latest developments of head-mounted displays for virtual and augmented reality applications.
Introduction to Flat Panel Displays introduces and updates both the fundamental physics and materials concepts underlying flat panel display technology and their application to smart phones, ultra-high definitions TVs, computers, and virtual and augmented reality systems.
The book includes new information on quantum-dot enhanced LCDs, device configurations and performance, and nitrate-based LEDs. The authors also provide updates on technologies like:
OLED materials, including phosphorescent, TTA, and TADF OLEDs
White light OLED and light extraction
OLED for mobile and TV
Light and flexible OLED
Reflective displays, including e-paper technology
Low power consumption displays
The perfect reference for graduate students and new entrants to the display industry, Introduction to Flat Panel Displays offers problem and homework sets at the end of each chapter to measure retention and learning.
目次
Series Editor's Foreword xiii
1 Flat Panel Displays 1
1.1 Introduction 1
1.2 Emissive and non-emissive Displays 4
1.3 Display Specifications 4
1.3.1 Physical Parameters 5
1.3.2 Brightness and Color 7
1.3.3 Contrast Ratio 8
1.3.4 Spatial and Temporal Characteristics 8
1.3.5 Efficiency and Power Consumption 9
1.3.6 Flexible Displays 9
1.4 Applications of Flat Panel Displays 9
1.4.1 Liquid Crystal Displays 10
1.4.2 Light-Emitting Diodes 10
1.4.3 Organic Light-Emitting Devices 11
1.4.4 Reflective Displays 11
1.4.5 Head-Mounted Displays 12
1.4.6 Touch Panel Technologies 12
References 13
2 Color Science and Engineering 15
2.1 Introduction 15
2.2 Photometry 16
2.3 The Eye 18
2.4 Colorimetry 22
2.4.1 Trichromatic Space 22
2.4.2 CIE 1931 Colormetric Observer 24
2.4.3 CIE 1976 Uniform Color System 27
2.4.4 CIECAM 02 Color Appearance Model 30
2.4.5 Color Gamut 31
2.4.6 Light Sources 32
2.4.6.1 Sunlight and Blackbody Radiators 32
2.4.6.2 Light Sources for Transmissive, Reflective, and Projection Displays 33
2.4.6.3 Color Rendering Index 34
2.5 Production and Reproduction of Colors 34
2.6 Display Measurements 35
Homework Problems 36
References 36
3 Thin Film Transistors 39
3.1 Introduction 39
3.2 Basic Concepts of Crystalline Semiconductor Materials 39
3.2.1 Band Structure of Crystalline Semiconductors 40
3.2.2 Intrinsic and Extrinsic Semiconductors 43
3.3 Classification of Silicon Materials 46
3.4 Hydrogenated Amorphous Silicon (a-Si:H) 46
3.4.1 Electronic Structure of a:Si-H 47
3.4.2 Carrier Transport in a-Si:H 48
3.4.3 Fabrication of a-Si:H 48
3.5 Polycrystalline Silicon 49
3.5.1 Carrier Transport in Polycrystalline Silicon 49
3.5.2 Fabrication of Polycrystalline-Silicon 50
3.6 Thin-Film Transistors 52
3.6.1 Fundamentals of TFTs 52
3.6.2 a-Si:H TFTs 55
3.6.3 Poly-Si TFTs 55
3.6.4 Organic TFTs 56
3.6.5 Oxide Semiconductor TFTs 57
3.6.6 Flexible TFT Technology 59
3.7 PM and AM Driving Schemes 61
Homework Problems 67
References 67
4 Liquid Crystal Displays 71
4.1 Introduction 71
4.2 Transmissive LCDs 72
4.3 Liquid Crystal Materials 74
4.3.1 Phase Transition Temperatures 75
4.3.2 Eutectic Mixtures 75
4.3.3 Dielectric Constants 77
4.3.4 Elastic Constants 78
4.3.5 Rotational Viscosity 79
4.3.6 Optical Properties 80
4.3.7 Refractive Indices 80
4.3.7.1 Wavelength Effect 80
4.3.7.2 Temperature Effect 82
4.4 Liquid Crystal Alignment 83
4.5 Homogeneous Cell 84
4.5.1 Phase Retardation Effect 85
4.5.2 Voltage Dependent Transmittance 86
4.6 Twisted Nematic (TN) 87
4.6.1 Optical Transmittance 87
4.6.2 Viewing Angle 89
4.6.3 Film-Compensated TN 90
4.7 In-Plane Switching (IPS) 91
4.7.1 Device Structure 92
4.7.2 Voltage-Dependent Transmittance 92
4.7.3 Viewing Angle 92
4.7.4 Phase Compensation Films 93
4.8 Fringe Field Switching (FFS) 95
4.8.1 Device Configurations 95
4.8.2 n-FFS versus p-FFS 96
4.9 Vertical Alignment (VA) 98
4.9.1 Voltage-Dependent Transmittance 98
4.9.2 Response Time 99
4.9.3 Overdrive and Undershoot Addressing 101
4.9.4 Multi-domain Vertical Alignment (MVA) 102
4.10 Ambient Contrast Ratio 103
4.10.1 Modeling of Ambient Contrast Ratio 103
4.10.2 Ambient Contrast Ratio of LCD 103
4.10.3 Ambient Contrast Ratio of OLED 104
4.10.4 Simulated ACR for Mobile Displays 105
4.10.5 Simulated ACR for TVs 105
4.10.6 Simulated Ambient Isocontrast Contour 106
4.10.6.1 Mobile Displays 106
4.10.6.2 Large-Sized TVs 108
4.10.7 Improving LCD's ACR 109
4.10.8 Improving OLED's ACR 110
4.11 Motion Picture Response Time (MPRT) 112
4.12 Wide Color Gamut 114
4.12.1 Material Synthesis and Characterizations 115
4.12.2 Device Configurations 116
4.13 High Dynamic Range 118
4.13.1 Mini-LED Backlit LCDs 118
4.13.2 Dual-Panel LCDs 120
4.14 Future Directions 121
Homework Problems 123
References 124
5 Light-Emitting Diodes 135
5.1 Introduction 135
5.2 Material Systems 138
5.2.1 AlGaAs and AlGaInP Material Systems for Red and Yellow LEDs 140
5.2.2 GaN-Based Systems for Green, Blue, UV and UV LEDs 141
5.2.3 White LEDs 143
5.3 Diode Characteristics 146
5.3.1 p- and n-Layer 147
5.3.2 Depletion Region 148
5.3.3 J-V Characteristics 150
5.3.4 Heterojunction Structures 152
5.3.5 Quantum-Well, -Wire, and -Dot Structures 152
5.4 Light-Emitting Characteristics 154
5.4.1 Recombination Model 154
5.4.2 L-J Characteristics 155
5.4.3 Spectral Characteristics 156
5.4.4 Efficiency Droop 159
5.5 Device Fabrication 160
5.5.1 Epitaxy 161
5.5.2 Process Flow and Device Structure Design 165
5.5.3 Extraction Efficiency Improvement 166
5.5.4 Packaging 168
5.6 Applications 169
5.6.1 Traffic Signals, Electronic Signage and Huge Displays 169
5.6.2 LCD Backlight 170
5.6.3 General Lighting 172
5.6.4 Micro-LEDs 173
Homework Problems 175
References 175
6 Organic Light-Emitting Devices 179
6.1 Introduction 179
6.2 Energy States in Organic Materials 180
6.3 Photophysical Processes 182
6.3.1 Franck-Condon Principle 182
6.3.2 Fluorescence and Phosphorescence 183
6.3.3 Jablonski Diagram 185
6.3.4 Intermolecular Processes 186
6.3.4.1 Energy Transfer Processes 186
6.3.4.2 Excimer and Exciplex Formation 188
6.3.4.3 Quenching Processes 188
6.3.5 Quantum Yield Calculation 189
6.4 Carrier Injection, Transport, and Recombination 191
6.4.1 Richardson-Schottky Thermionic Emission 192
6.4.2 SCLC, TCLC, and P-F Mobility 193
6.4.3 Charge Recombination 195
6.4.4 Electromagnetic Wave Radiation 195
6.5 Structure, Fabrication and Characterization 197
6.5.1 Device Structure of Organic Light-Emitting Device 198
6.5.1.1 Two-Layer Organic Light-Emitting Device 198
6.5.1.2 Matrix Doping in the EML 200
6.5.1.3 HIL, EIL, and p-i-n Structure 202
6.5.1.4 Top-Emission and Transparent OLEDs 204
6.5.2 Polymer OLED 205
6.5.3 Device Fabrication 206
6.5.3.1 Thin-film Formation 207
6.5.3.2 Encapsulation and Passivation 210
6.5.3.3 Device Structures for AM Driving 211
6.5.4 Electrical and Optical Characteristics 212
6.5.5 Degradation Mechanisms 214
6.6 Triplet Exciton Utilization 219
6.6.1 Phosphorescent OLEDs 219
6.6.2 Triplet-Triplet Annihilation OLED 221
6.6.3 Thermally Activated Delayed Fluorescence 222
6.6.4 Exciplex-Based OLED 223
6.7 Tandem Structure 224
6.8 Improvement of Extraction Efficiency 226
6.9 White OLEDs 229
6.10 Quantum-Dot Light-Emitting Diode 231
6.11 Applications 233
6.11.1 Mobile OLED Display 233
6.11.2 OLED TV 234
6.11.3 OLED Lighting 235
6.11.4 Flexible OLEDs 235
6.11.5 Novel Displays 236
Homework Problems 236
References 237
7 Reflective Displays 245
7.1 Introduction 245
7.2 Electrophoretic Displays 245
7.3 Reflective Liquid Crystal Displays 249
7.4 Reflective Display Based on Optical Interference (Mirasol Display) 253
7.5 Electrowetting Display 254
7.6 Comparison of Different Reflective Display Technologies 256
Homework Problems 256
References 257
8 Fundamentals of Head-Mounted Displays for Virtual and Augmented Reality 259
8.1 Introduction 259
8.2 Human Visual System 262
8.3 Fundamentals of Head-mounted Displays 265
8.3.1 Paraxial Optical Specifications 265
8.3.2 Microdisplay Sources 272
8.3.3 HMD Optics Principles and Architectures 275
8.3.4 Optical Combiner 280
8.4 HMD Optical Designs and Performance Specifications 286
8.4.1 HMD Optical Designs 286
8.4.2 HMD Optical Performance Specifications 290
8.5 Advanced HMD Technologies 298
8.5.1 Eyetracked and Fovea-Contingent HMDs 299
8.5.2 Dynamic Range Enhancement 302
8.5.3 Addressable Focus Cues in HMDs 305
8.5.3.1 Extended Depth of Field Displays 307
8.5.3.2 Vari-Focal Plane (VFP) Displays 308
8.5.3.3 Multi-Focal Plane (MFP) Displays 309
8.5.3.4 Head-Mounted Light Field (LF) Displays 315
8.5.4 Head-Mounted Light Field Displays 316
8.5.4.1 InI-Based Head-Mounted Light Field Displays 317
8.5.4.2 Computational Multi-Layer Head-Mounted Light Field Displays 321
8.5.5 Mutual Occlusion Capability 323
References 328
9 Touch Panel Technology 337
9.1 Introduction 337
9.2 Resistive Touch Panel 338
9.3 Capacitive Touch Panel 339
9.4 On-Cell and In-Cell Touch Panel 344
9.5 Optical Sensing for Large Panels 347
Homework Problems 348
References 348
Index 351
「Nielsen BookData」 より