A machine learning based pairs trading investment strategy

著者

    • Moraes Sarmento, Simão
    • Horta, Nuno

書誌事項

A machine learning based pairs trading investment strategy

Simão Moraes Sarmento, Nuno Horta

(Springer briefs in applied sciences and technology, . Computational intelligence)

Springer, c2021

  • : pbk

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

ISSN for subseries "SpringerBriefs in computational inrelligence": 26253704

Includes bibliographical references

内容説明・目次

内容説明

This book investigates the application of promising machine learning techniques to address two problems: (i) how to find profitable pairs while constraining the search space and (ii) how to avoid long decline periods due to prolonged divergent pairs. It also proposes the integration of an unsupervised learning algorithm, OPTICS, to handle problem (i), and demonstrates that the suggested technique can outperform the common pairs search methods, achieving an average portfolio Sharpe ratio of 3.79, in comparison to 3.58 and 2.59 obtained using standard approaches. For problem (ii), the authors introduce a forecasting-based trading model capable of reducing the periods of portfolio decline by 75%. However, this comes at the expense of decreasing overall profitability. The authors also test the proposed strategy using an ARMA model, an LSTM and an LSTM encoder-decoder.

目次

Chapter 1. Introduction Chapter 2. Pairs Trading - Background and Related Work Chapter 3. Proposed Pairs Selection Framework Chapter 4. Proposed Trading Model Chapter 5. Implementation Chapter 6. Results Chapter 7. Conclusions and Future Work

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BD04685868
  • ISBN
    • 9783030472504
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    [Cham]
  • ページ数/冊数
    ix, 104 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ