Cohomology of infinite-dimensional Lie algebras
著者
書誌事項
Cohomology of infinite-dimensional Lie algebras
(Contemporary Soviet mathematics)
Springer, c1986
- : softcover
- タイトル別名
-
Kogomologii beskonechnomernykh algebr Li
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Reprint. Originally published: New York : Consultants Bureau , c1986
"Translation of: Kogomologii beskonechnomernykh algebr Li"--T.p. verso
Includes bibliographical references
内容説明・目次
内容説明
There is no question that the cohomology of infinite dimensional Lie algebras deserves a brief and separate mono graph. This subject is not cover~d by any of the tradition al branches of mathematics and is characterized by relative ly elementary proofs and varied application. Moreover, the subject matter is widely scattered in various research papers or exists only in verbal form. The theory of infinite-dimensional Lie algebras differs markedly from the theory of finite-dimensional Lie algebras in that the latter possesses powerful classification theo rems, which usually allow one to "recognize" any finite dimensional Lie algebra (over the field of complex or real numbers), i.e., find it in some list. There are classifica tion theorems in the theory of infinite-dimensional Lie al gebras as well, but they are encumbered by strong restric tions of a technical character. These theorems are useful mainly because they yield a considerable supply of interest ing examples. We begin with a list of such examples, and further direct our main efforts to their study.
目次
1. General Theory.- 1. Lie algebras.- 2. Modules.- 3. Cohomology and homology.- 4. Principal algebraic interpretations of cohomology.- 5. Main computational methods.- 6. Lie superalgebras.- 2. Computations.- 1. Computations for finite-dimensional Lie algebras.- 2. Computations for Lie algebras of formal vector fields. General results.- 3. Computations for Lie algebras of formal vector fields on the line.- 4. Computations for Lie algebras of smooth vector fields.- 5. Computations for current algebras.- 6. Computations for Lie superalgebras.- 3. Applications.- 1. Characteristic classes of foliations.- 2. Combinatorial identities.- 3. Invariant differential operators.- 4. Cohomology of Lie algebras and cohomology of Lie groups.- 5. Cohomology operations in cobordism theory..- References.
「Nielsen BookData」 より