Complex analysis
著者
書誌事項
Complex analysis
(Graduate texts in mathematics, 103)
Springer, c1999
4th ed
- : [pbk.]
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Originally published by Springer-Verlag New York, Inc. in 1999. Softcover reprint of the hardcover 4th edition 1999."--T.p. verso
Includes bibliographical references (p. [479]) and index
内容説明・目次
内容説明
Now in its fourth edition, the first part of this book is devoted to the basic material of complex analysis, while the second covers many special topics, such as the Riemann Mapping Theorem, the gamma function, and analytic continuation. Power series methods are used more systematically than is found in other texts, and the resulting proofs often shed more light on the results than the standard proofs. While the first part is suitable for an introductory course at undergraduate level, the additional topics covered in the second part give the instructor of a gradute course a great deal of flexibility in structuring a more advanced course.
目次
I: BASIC THEORY. 1: Complex Numbers and Functions. 2: Power Series. 3: Cauchy's Theorem, First Part. 4: Winding Numbers and Cauchy's Theorem. 5: Applications of Cauchy's Integral Formula. 6: Calculus of Residues. 7: Conformal Mappings. 8: Harmonic Functions. II: GEOMETRIC FUNCTION THEORY. 9: Schwarz Reflection. 10: The Riemann Mapping Theorem. 11: Analytic Continuation Along Curves. III: VARIOUS ANALYTIC TOPICS. 12: Applications of the Maximum Modulus Principle and Jensen's Formula. 13: Entire and Meromorphic Functions. 14: Elliptic Functions. 15: The Gamma and Zeta Functions. 16: The Prime Number Theorem.
「Nielsen BookData」 より