Quasi-periodic traveling waves on an infinitely deep perfect fluid under gravity

Author(s)

    • Feola, Roberto
    • Giuliani, Filippo

Bibliographic Information

Quasi-periodic traveling waves on an infinitely deep perfect fluid under gravity

Roberto Feola, Filippo Giuliani

(Memoirs of the American Mathematical Society, no. 1471)

American Mathematical Society, c2024

Available at  / 1 libraries

Search this Book/Journal

Note

"March 2024, volume 295, number 1471 (third of 6 numbers)"

Includes bibliographical references (p. 155-158)

Description and Table of Contents

Description

We consider the gravity water waves system with a periodic one-dimensional interface in infinite depth and we establish the existence and the linear stability of small amplitude, quasi-periodic in time, traveling waves. This provides the first existence result of quasi-periodic water waves solutions bifurcating from a completely resonant elliptic fixed point. The proof is based on a Nash–Moser scheme, Birkhoff normal form methods and pseudo differential calculus techniques. We deal with the combined problems of small divisors and the fully-nonlinear nature of the equations. The lack of parameters, like the capillarity or the depth of the ocean, demands a refined nonlinear bifurcation analysis involving several nontrivial resonant wave interactions, as the well-known "Benjamin-Feir resonances". We develop a novel normal form approach to deal with that. Moreover, by making full use of the Hamiltonian structure, we are able to provide the existence of a wide class of solutions which are free from restrictions of parity in the time and space variables.

Table of Contents

Chapters 1. Introduction 2. Functional setting 3. Normal forms and integrability properties of the pure gravity water waves 4. Weak Birkhoff normal form 5. The nonlinear functional setting 6. Approximate inverse 7. The linearized operator in the normal directions 8. Symmetrization of the linearized operator at the highest order 9. Block-diagonalization 10. Reduction at the highest orders 11. Linear Birkhoff normal form 12. Inversion of the linearized operator 13. The Nash-Moser nonlinear iteration A. Flows and conjugations B. Technical lemmata

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BD07096455
  • ISBN
    • 9781470468774
  • Country Code
    us
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Providence, RI
  • Pages/Volumes
    v, 158 p.
  • Size
    26cm
  • Parent Bibliography ID
Page Top