DETR(DEtection TRansformer)&最新・物体検出アーキテクチャ入門 : ViT/CenterNet/Pix2Seqを活用した実践ディープラーニング・プログラミング
Author(s)
Bibliographic Information
DETR(DEtection TRansformer)&最新・物体検出アーキテクチャ入門 : ViT/CenterNet/Pix2Seqを活用した実践ディープラーニング・プログラミング
秀和システム, 2025.7
- Other Title
-
DETR&最新・物体検出アーキテクチャ入門
- Title Transcription
-
DETR DEtection TRansformer & サイシン ブッタイ ケンシュツ アーキテクチャ ニュウモン : ViT CenterNet Pix2Seq オ カツヨウ シタ ジッセン ディープ ラーニング プログラミング
Available at / 4 libraries
-
No Libraries matched.
- Remove all filters.
Search this Book/Journal
Note
表現種別: テキスト (ncrcontent), 機器種別: 機器不用 (ncrmedia), キャリア種別: 冊子 (ncrcarrier)
参考文献: p792-795
ダウンロードサービス付
Description and Table of Contents
Description
Transformerを用いた代表的検出モデル「DETR」を中心に、ViT(Vision Transformer)による物体領域の検出、「CenterNet」による中心点予測型の検出、言語生成型アプローチである「Pix2Seq」、さらには「RetinaNet」などのCNN系アーキテクチャまで幅広くカバー、近年の物体検出分野の主要モデルを比較・理解しながら習得できます。全編にわたり、「Keras」(一部対応)と「PyTorch」の両ライブラリに対応しており、モデルの構築、推論、可視化、バックボーン(ResNet101/152)の変更や、COCOデータセットを用いた大規模推論処理の実装までを丁寧に解説しました。画像分類のその先…「どこに、何があるのかを検出する」という実践的課題に挑むすべての人におすすめの一冊です。
Table of Contents
- 1章 開発環境について
- 2章 ViTモデルによる物体領域の検出(Keras)
- 3章 ViTモデルによる物体領域の検出(PyTorch)
- 4章 CenterNetによる物体領域の検出(PyTorch)
- 5章 DETRモデルによる物体検出(ResNet‐101)
- 6章 ResNet‐152をバックボーンとするDETRによる物体検出
- 7章 COCOトレーニングセットを使用した物体検出
- 8章 事前トレーニング済みDETRモデルによる物体検出
- 9章 Pix2Seqモデルを用いた物体検出(PyTorch)
- 10章 RetinaNetによる物体検出(Keras)
by "BOOK database"