Image textures and Gibbs random fields
Author(s)
Bibliographic Information
Image textures and Gibbs random fields
(Computational imaging and vision, v. 16)
Kluwer Academic Publishers, c1999
Available at / 19 libraries
-
No Libraries matched.
- Remove all filters.
Note
Bibliographical reference: p. 243-248
Includes index
Description and Table of Contents
Description
This text presents techniques for describing image textures. Contrary to the usual practice of embedding the images to known modelling frameworks borrowed from statistical physics or other domains, this book deduces the Gibbs models from basic image features and tailors the modelling framework to the images. This approach results in more general Gibbs models than can be either Markovian or non-Markovian and possess arbitrary interaction structures and strengths. The book presents computationally feasible algorithms for parameter estimation and image simulation and demonstrates their abilities and limitations by numerous experimental results. The book avoids too abstract mathematical constructions and gives explicit image-based explanations of all the notions involved.
Table of Contents
Preface. Acknowledgements. Instead of introduction. 1. Texture, Structure, and Pairwise Interactions. 2. Markov and Non-Markov Gibbs Image Models. 3. Supervised MLE-Based Parameter Learning. 4. Supervised Conditional MLE-Based Learning. 5. Experiments in Simulating Natural Textures. 6. Experiments in Retrieving Natural Textures. 7. Experiments in Segmenting Natural Textures. Texture Modelling: Theory vs. Heuristics. References. Index.
by "Nielsen BookData"