Role of environmental factors
Author(s)
Bibliographic Information
Role of environmental factors
(Encyclopedia of plant physiology. New series, v. 11 . Hormonal regulation of development ; 3)
Springer-Verlag, 1985
- :U.S.
- :G.W.
Available at / 68 libraries
-
Okayama University Institute of Plant Science and Resources Branch Library
:U.S.172||349S205000194862*
-
Obihiro University of Agriculture and Veterinary Medicine Library図
:U.S.471.3037691,
471.3/En58/11020376910 -
Science and Technology Library, Kyushu University
:G.W.471.5/E 58/(11)068582185014952,
471.3/E 58/(11)068342185005205 -
Japan International Research Center for Agricultural Sciences Library
:G.W.471.08||Enc||||図書館190000009695
-
National Institutes of Natural Sciences Okazaki Library and Information Center図
:G.W.471.3/En/119212914213
-
Faculty of Textile Science and Technology Library, Shinshu University図
:G.W.471.3:R 64:214040650249592
-
University Library for Agricultural and Life Sciences, The University of Tokyo図
613.713:E58:115000097807
-
No Libraries matched.
- Remove all filters.
Description and Table of Contents
Description
Table of Contents
- I: Factors Internal to the Plant.- Nutrients.- 1 Relation of Hormones to Nutrient Mobilization and the Internal Environment of the Plant: The Supply of Mineral Nutrients and Photosynthate.- 1 Introduction.- 2 Sources, Sinks, and Assimilate Movement in Relation to Morphology.- 2.1 Definitions of Source and Sink.- 2.2 Position Centers of Assimilate Production.- 2.3 Strength of the Sinks.- 2.4 Patterns of Distribution of Assimilates in Relation to Vascular Connections.- 2.5 The Demand for Assimilates.- 3 Role of Hormones and Growth Regulators in Assimilate Movement.- 3.1 Effect of Plant Hormones on Partition of Assimilates.- 3.2 Partition Between Roots and Shoots.- 3.3 Assimilate Partition Within the Shoot System.- 3.4 Mobilization of Assimilates into Fruits.- 3.5 Import of Assimilates into Expanded Leaves.- 3.6 Export of Assimilates When Leaves or Shoots Are Pretreated with Growth Substances.- 3.7 Time-Course Studies on Hormone-Induced Movement of 14C Assimilates.- 3.8 Effect of Hormone Concentration of Translocation.- 3.9 Interaction of Different Hormones on Hormone-Directed Transport.- 3.10 Effect of Water Relations on Auxin-Induced Mobilization.- 3.11 Roots as a Sink.- 3.12 Auxin and Senescence.- 3.13 Effect of Hormones on Mineral Nutrient Uptake.- 4 Possible Regulatory Points for Hormone-Directed Transport.- 4.1 Hormonal Regulation of Assimilate Movement at the Level of Source-Path-Sink.- 4.1.1 Time Between Treatments and Response.- 4.1.2 Effects on Nonelongating Tissues.- 4.1.3 Relationship Between the Lag Period and the Distance Moved by the Hormone.- 4.1.4 Polar Auxin Transport-Inhibitor Studies.- 4.1.5 Inhibitor Studies of Protein Synthesis and Nucleic Acid Metabolism (NAM).- 4.1.6 Metabolism and Accumulation Studies.- 4.1.7 Long-Distance Transport.- 4.1.8 Distinguishing Between Hormonal Effects on Sink Strength and Phloem Transport Processes.- 4.1.9 Rates of Photosynthesis, Export Rates of Assimilates and Changes in the Mobilizing Abilities Between Competing Sinks.- 5 Hormonal Regulation of Photosynthate Supply.- 6 Conclusions.- References.- Time-Related Factors and Phenomena.- 2 Rhythms and Their Relations to Hormones.- 1 Introduction.- 1.1 General.- 1.2 Plant Development.- 2 Bioperiodicities.- 2.1 Rhythm Characteristics.- 2.2 Ultradian Rhythms.- 2.3 Circadian Rhythms.- 2.4 Infradian Rhythms.- 2.5 Rhythm Interrelationships.- 3 Photoperiodism.- 4 Rhythms: Endogenous Hormones.- 5 Rhythms: Exogenous Growth Regulators.- 5.1 Auxins.- 5.1.1 Auxin Transport.- 5.1.2 Tropisms.- 5.1.3 Leaf Movements.- 5.2 Abscisic Acid, Cytokinins, Ethylene, and Gibberellins.- 5.3 Herbicides.- 6 Mechanisms.- 6.1 Chemical Oscillations.- 6.2 Transport.- 6.3 Enzymes.- 6.4 Ions and Membranes.- 7 Role of Rhythms in the Life of the Plant.- 7.1 Avoidance of Pathological Effects.- 7.2 Adaptive Significance.- 7.3 Organization in Time.- 8 Conclusions.- References.- Addendum: Turgorins.- 3 Hormonal Aspects of Phase Change and Precocious Flowering.- 1 Introduction.- 2 Factors Affecting Characteristics Associated with Juvenility.- 2.1 Inability to Flower.- 2.2 Ability to Initiate Adventitious Roots.- 2.3 Other Manifestations of Phase Change.- 3 Compositional Differences Between Juvenile and Adult Phases.- 3.1 Nucleic Acids.- 3.2 Proteins.- 3.3 Rooting Cofactors.- 3.4 Gibberellins.- 3.5 AbscisicAcid.- 3.6 Cytokinins.- 3.7 Sterols.- 4 Juvenile to Adult Phase Change and Its Reversibility.- 4.1 Influence of Cultural Techniques on Maturation.- 4.2 Reversions in Various Characteristics from Mature to Juvenile Phase.- 5 Tissue and Organ Culture of Juvenile and Adult Phases.- 6 Effect of Genotype on Length of the Juvenile Period.- 7 Summary and Conclusions.- References.- Direction.- 4 Polarity.- 1 Introduction.- 2 Single-Cell Systems.- 2.1 Fucoid Cells.- 2.2 Ochromonas.- 2.3 Single Cell Systems of Higher Plants.- 3 Muliple Cell Systems.- 3.1 Dictyostelium.- 3.2 Higher Plant Systems.- 3.2.1 Embryogenesis in Seed Plants.- 3.2.2 Growth, Development and Regeneration in Higher Plants.- 4 Models for Polarity.- 5 Conclusions.- References.- 5 Epinasty, Hyponasty, and Related Topics.- 1 Introduction.- 2 Epinasty in Response to Chemical Application.- 2.1 Ethylene and Ethrel.- 2.1.1 Leaves and Leaf Petioles.- 2.1.2 Stems.- 2.2 Auxins and Herbicides.- 2.2.1 Leaves.- 2.2.2 Stems.- 2.3 Gibberellins.- 2.4 Miscellaneous Chemicals.- 2.4.1 Brassins.- 2.4.2 Halogenated Phenolics.- 2.4.3 Morphactins and Malformin.- 3 Epinastic and Hyponastic Responses to Parasitic Microorganisms.- 4 Epinasty Induced by Physical Factors.- 4.1 Light.- 4.1.1 Wavelength.- 4.1.2 Intensity.- 4.2 Gravity.- 4.3 Waterlogging.- 5 Hormonal Theories.- 5.1 Laterial Shoots and Leaf Petioles.- 5.1.1 Auxin Direction.- 5.1.2 Differential Sensitivity.- 5.2 Plumular Hook Formation.- 5.3 Hyponasty.- 6 Concluding Remarks.- References.- 6 Position as a Factor in Growth and Development Effects.- 1 Introduction.- 2 The Nature of the Positional Signal.- 2.1 Compartmentation and the Availability of Growth Substrates.- 2.2 Some Salient Observations and Experiments on the Control of Cambial Growth.- 2.2.1 Growth in Relation to Position on the Bole.- 2.2.2 Growth of the Basal Taper and Buttresses of Tree Trunks.- 2.2.3 Inhibition of Cambial Growth.- 2.2.4 Growth Effects of Ringing or Girdling.- 2.2.5 A Possible Mechanism for Girdling Effects and Implications for the Positional Signal.- 3 Regulation of Sinks and Competition by the Positional Signal.- 3.1 Dependent or Induced Sinks.- 3.2 Autonomous or Uninduced Sinks.- 3.3 Competition Between Dependent and Autonomous Sinks.- 3.4 The Role of Ethylene.- 4 Propagation of the Positional Signal.- 4.1 The Descending Component.- 4.1.1 Sources of Positional Hormones in the Tops of Plants.- 4.1.2 Contribution of the Phloem.- 4.2 The Ascending Component.- 4.2.1 Roots as a Source of Hormones.- 4.2.2 Contribution of the Xylem.- 5 Conclusion.- References.- II: Factors External to the Plant Gravity.- Gravity.- 7 Roles of Hormones, Protons and Calcium in Geotropism.- 1 Introduction.- 2 Patterns of Response.- 2.1 Relevance of Kinetic Data.- 2.2 Difficulties of Temporally Separating Sequelae.- 2.3 Distribution of Receptivity.- 2.4 Patterns of Differential Growth.- 3 Hormonal Participation.- 3.1 Generalities About Roots and Shoots.- 3.2 Shoots.- 3.2.1 Perspective.- 3.2.2 Auxin.- 3.2.2.1 Establishing the Occurrence of Lateral Transport.- 3.2.2.2 The Time-Course of Lateral Transport.- 3.2.2.3 The Time-Course of Auxin-Induced Growth.- 3.2.2.4 Mature Shoots of Grass.- 3.2.2.5 Plagiogeotropism.- 3.2.3 Proton Secretion andVoltage Gradients.- 3.2.3.1 Perspective.- 3.2.3.2 Proton Asymmetry.- 3.2.3.3 Electrical Asymmetry.- 3.2.4 Gibberellins.- 3.2.4.1 Young, Orthogenotropic Shoots.- 3.2.4.2 Mature Shoots of Grass.- 3.2.4.3 Plagiogeotropic Systems.- 3.2.4.4 Overview.- 3.2.5 AbscisicAcid.- 3.2.6 Ethylene.- 3.2.6.1 Roles in Primary Curvature.- 3.2.6.2 Counter-Reactive Role.- 3.2.6.3 The Rationale for Counter-Reaction.- 3.2.6.4 Plagiogeotropism.- 3.2.7 Calcium (and Potassium and Phosphate).- 3.2.8 A Preliminary Model for the Roles of Calcium in Response to Gravity, Friction and Flexure.- 3.2.8.1 Current Concepts in Calcium Physiology.- 3.2.8.2 Reception.- 3.2.8.3 Activation of an Auxin Carrier.- 3.2.8.4 Electrochemical Migration of Calcium Across the Organ.- 3.2.8.5 The Vacuole as a Source of Cytosilic and Apoplastic Calcium.- 3.2.8.6 The Early Phase of Curvature.- 3.2.8.7 A Counter-Reaction.- 3.2.8.8 Membrane Deformation Resulting from Friction and Flexure.- 3.2.8.9 Crosstalk Between Geotropism and Response to Friction and Flexure.- 3.2.8.10 Auxin Regulation of Ethylene Synthesis via Cytosolic Calcium.- 3.2.8.11 Another Counter-Reaction.- 3.2.8.12 Alternative Models.- 3.2.9 More Factors and Asymmetries.- 3.2.9.1 Chemical Substances.- 3.2.9.2 Phloem Translocation.- 3.2.9.3 Transpiration.- 3.2.10 Differential Growth, and Recent Cavils About Its Control by Hormones.- 3.3 Roots.- 3.3.1 Perspective.- 3.3.2 Calcium in the Cap.- 3.3.3 Auxin.- 3.3.4 Connection Between Calcium in the Tip and Development of IAA Asymmetry.- 3.3.5 Ethylene.- 3.3.6 Protons.- 3.3.7 Secondary Asymmetries: Reaction and Counter-Reaction.- 3.3.7.1 Calcium in the Elongation Zone.- 3.3.7.2 Gibberellin and Other Hormones.- 3.3.7.3 "Adaptation"I: Factors Internal to the Plant.- Nutrients.- 1 Relation of Hormones to Nutrient Mobilization and the Internal Environment of the Plant: The Supply of Mineral Nutrients and Photosynthate.- 1 Introduction.- 2 Sources, Sinks, and Assimilate Movement in Relation to Morphology.- 2.1 Definitions of Source and Sink.- 2.2 Position Centers of Assimilate Production.- 2.3 Strength of the Sinks.- 2.4 Patterns of Distribution of Assimilates in Relation to Vascular Connections.- 2.5 The Demand for Assimilates.- 3 Role of Hormones and Growth Regulators in Assimilate Movement.- 3.1 Effect of Plant Hormones on Partition of Assimilates.- 3.2 Partition Between Roots and Shoots.- 3.3 Assimilate Partition Within the Shoot System.- 3.4 Mobilization of Assimilates into Fruits.- 3.5 Import of Assimilates into Expanded Leaves.- 3.6 Export of Assimilates When Leaves or Shoots Are Pretreated with Growth Substances.- 3.7 Time-Course Studies on Hormone-Induced Movement of 14C Assimilates.- 3.8 Effect of Hormone Concentration of Translocation.- 3.9 Interaction of Different Hormones on Hormone-Directed Transport.- 3.10 Effect of Water Relations on Auxin-Induced Mobilization.- 3.11 Roots as a Sink.- 3.12 Auxin and Senescence.- 3.13 Effect of Hormones on Mineral Nutrient Uptake.- 4 Possible Regulatory Points for Hormone-Directed Transport.- 4.1 Hormonal Regulation of Assimilate Movement at the Level of Source-Path-Sink.- 4.1.1 Time Between Treatments and Response.- 4.1.2 Effects on Nonelongating Tissues.- 4.1.3 Relationship Between the Lag Period and the Distance Moved by the Hormone.- 4.1.4 Polar Auxin Transport-Inhibitor Studies.- 4.1.5 Inhibitor Studies of Protein Synthesis and Nucleic Acid Metabolism (NAM).- 4.1.6 Metabolism and Accumulation Studies.- 4.1.7 Long-Distance Transport.- 4.1.8 Distinguishing Between Hormonal Effects on Sink Strength and Phloem Transport Processes.- 4.1.9 Rates of Photosynthesis, Export Rates of Assimilates and Changes in the Mobilizing Abilities Between Competing Sinks.- 5 Hormonal Regulation of Photosynthate Supply.- 6 Conclusions.- References.- Time-Related Factors and Phenomena.- 2 Rhythms and Their Relations to Hormones.- 1 Introduction.- 1.1 General.- 1.2 Plant Development.- 2 Bioperiodicities.- 2.1 Rhythm Characteristics.- 2.2 Ultradian Rhythms.- 2.3 Circadian Rhythms.- 2.4 Infradian Rhythms.- 2.5 Rhythm Interrelationships.- 3 Photoperiodism.- 4 Rhythms: Endogenous Hormones.- 5 Rhythms: Exogenous Growth Regulators.- 5.1 Auxins.- 5.1.1 Auxin Transport.- 5.1.2 Tropisms.- 5.1.3 Leaf Movements.- 5.2 Abscisic Acid, Cytokinins, Ethylene, and Gibberellins.- 5.3 Herbicides.- 6 Mechanisms.- 6.1 Chemical Oscillations.- 6.2 Transport.- 6.3 Enzymes.- 6.4 Ions and Membranes.- 7 Role of Rhythms in the Life of the Plant.- 7.1 Avoidance of Pathological Effects.- 7.2 Adaptive Significance.- 7.3 Organization in Time.- 8 Conclusions.- References.- Addendum: Turgorins.- 3 Hormonal Aspects of Phase Change and Precocious Flowering.- 1 Introduction.- 2 Factors Affecting Characteristics Associated with Juvenility.- 2.1 Inability to Flower.- 2.2 Ability to Initiate Adventitious Roots.- 2.3 Other Manifestations of Phase Change.- 3 Compositional Differences Between Juvenile and Adult Phases.- 3.1 Nucleic Acids.- 3.2 Proteins.- 3.3 Rooting Cofactors.- 3.4 Gibberellins.- 3.5 AbscisicAcid.- 3.6 Cytokinins.- 3.7 Sterols.- 4 Juvenile to Adult Phase Change and Its Reversibility.- 4.1 Influence of Cultural Techniques on Maturation.- 4.2 Reversions in Various Characteristics from Mature to Juvenile Phase.- 5 Tissue and Organ Culture of Juvenile and Adult Phases.- 6 Effect of Genotype on Length of the Juvenile Period.- 7 Summary and Conclusions.- References.- Direction.- 4 Polarity.- 1 Introduction.- 2 Single-Cell Systems.- 2.1 Fucoid Cells.- 2.2 Ochromonas.- 2.3 Single Cell Systems of Higher Plants.- 3 Muliple Cell Systems.- 3.1 Dictyostelium.- 3.2 Higher Plant Systems.- 3.2.1 Embryogenesis in Seed Plants.- 3.2.2 Growth, Development and Regeneration in Higher Plants.- 4 Models for Polarity.- 5 Conclusions.- References.- 5 Epinasty, Hyponasty, and Related Topics.- 1 Introduction.- 2 Epinasty in Response to Chemical Application.- 2.1 Ethylene and Ethrel.- 2.1.1 Leaves and Leaf Petioles.- 2.1.2 Stems.- 2.2 Auxins and Herbicides.- 2.2.1 Leaves.- 2.2.2 Stems.- 2.3 Gibberellins.- 2.4 Miscellaneous Chemicals.- 2.4.1 Brassins.- 2.4.2 Halogenated Phenolics.- 2.4.3 Morphactins and Malformin.- 3 Epinastic and Hyponastic Responses to Parasitic Microorganisms.- 4 Epinasty Induced by Physical Factors.- 4.1 Light.- 4.1.1 Wavelength.- 4.1.2 Intensity.- 4.2 Gravity.- 4.3 Waterlogging.- 5 Hormonal Theories.- 5.1 Laterial Shoots and Leaf Petioles.- 5.1.1 Auxin Direction.- 5.1.2 Differential Sensitivity.- 5.2 Plumular Hook Formation.- 5.3 Hyponasty.- 6 Concluding Remarks.- References.- 6 Position as a Factor in Growth and Development Effects.- 1 Introduction.- 2 The Nature of the Positional Signal.- 2.1 Compartmentation and the Availability of Growth Substrates.- 2.2 Some Salient Observations and Experiments on the Control of Cambial Growth.- 2.2.1 Growth in Relation to Position on the Bole.- 2.2.2 Growth of the Basal Taper and Buttresses of Tree Trunks.- 2.2.3 Inhibition of Cambial Growth.- 2.2.4 Growth Effects of Ringing or Girdling.- 2.2.5 A Possible Mechanism for Girdling Effects and Implications for the Positional Signal.- 3 Regulation of Sinks and Competition by the Positional Signal.- 3.1 Dependent or Induced Sinks.- 3.2 Autonomous or Uninduced Sinks.- 3.3 Competition Between Dependent and Autonomous Sinks.- 3.4 The Role of Ethylene.- 4 Propagation of the Positional Signal.- 4.1 The Descending Component.- 4.1.1 Sources of Positional Hormones in the Tops of Plants.- 4.1.2 Contribution of the Phloem.- 4.2 The Ascending Component.- 4.2.1 Roots as a Source of Hormones.- 4.2.2 Contribution of the Xylem.- 5 Conclusion.- References.- II: Factors External to the Plant Gravity.- Gravity.- 7 Roles of Hormones, Protons and Calcium in Geotropism.- 1 Introduction.- 2 Patterns of Response.- 2.1 Relevance of Kinetic Data.- 2.2 Difficulties of Temporally Separating Sequelae.- 2.3 Distribution of Receptivity.- 2.4 Patterns of Differential Growth.- 3 Hormonal Participation.- 3.1 Generalities About Roots and Shoots.- 3.2 Shoots.- 3.2.1 Perspective.- 3.2.2 Auxin.- 3.2.2.1 Establishing the Occurrence of Lateral Transport.- 3.2.2.2 The Time-Course of Lateral Transport.- 3.2.2.3 The Time-Course of Auxin-Induced Growth.- 3.2.2.4 Mature Shoots of Grass.- 3.2.2.5 Plagiogeotropism.- 3.2.3 Proton Secretion andVoltage Gradients.- 3.2.3.1 Perspective.- 3.2.3.2 Proton Asymmetry.- 3.2.3.3 Electrical Asymmetry.- 3.2.4 Gibberellins.- 3.2.4.1 Young, Orthogenotropic Shoots.- 3.2.4.2 Mature Shoots of Grass.- 3.2.4.3 Plagiogeotropic Systems.- 3.2.4.4 Overview.- 3.2.5 AbscisicAcid.- 3.2.6 Ethylene.- 3.2.6.1 Roles in Primary Curvature.- 3.2.6.2 Counter-Reactive Role.- 3.2.6.3 The Rationale for Counter-Reaction.- 3.2.6.4 Plagiogeotropism.- 3.2.7 Calcium (and Potassium and Phosphate).- 3.2.8 A Preliminary Model for the Roles of Calcium in Response to Gravity, Friction and Flexure.- 3.2.8.1 Current Concepts in Calcium Physiology.- 3.2.8.2 Reception.- 3.2.8.3 Activation of an Auxin Carrier.- 3.2.8.4 Electrochemical Migration of Calcium Across the Organ.- 3.2.8.5 The Vacuole as a Source of Cytosilic and Apoplastic Calcium.- 3.2.8.6 The Early Phase of Curvature.- 3.2.8.7 A Counter-Reaction.- 3.2.8.8 Membrane Deformation Resulting from Friction and Flexure.- 3.2.8.9 Crosstalk Between Geotropism and Response to Friction and Flexure.- 3.2.8.10 Auxin Regulation of Ethylene Synthesis via Cytosolic Calcium.- 3.2.8.11 Another Counter-Reaction.- 3.2.8.12 Alternative Models.- 3.2.9 More Factors and Asymmetries.- 3.2.9.1 Chemical Substances.- 3.2.9.2 Phloem Translocation.- 3.2.9.3 Transpiration.- 3.2.10 Differential Growth, and Recent Cavils About Its Control by Hormones.- 3.3 Roots.- 3.3.1 Perspective.- 3.3.2 Calcium in the Cap.- 3.3.3 Auxin.- 3.3.4 Connection Between Calcium in the Tip and Development of IAA Asymmetry.- 3.3.5 Ethylene.- 3.3.6 Protons.- 3.3.7 Secondary Asymmetries: Reaction and Counter-Reaction.- 3.3.7.1 Calcium in the Elongation Zone.- 3.3.7.2 Gibberellin and Other Hormones.- 3.3.7.3 "Adaptation"I: Factors Internal to the Plant.- Nutrients.- 1 Relation of Hormones to Nutrient Mobilization and the Internal Environment of the Plant: The Supply of Mineral Nutrients and Photosynthate.- 1 Introduction.- 2 Sources, Sinks, and Assimilate Movement in Relation to Morphology.- 2.1 Definitions of Source and Sink.- 2.2 Position Centers of Assimilate Production.- 2.3 Strength of the Sinks.- 2.4 Patterns of Distribution of Assimilates in Relation to Vascular Connections.- 2.5 The Demand for Assimilates.- 3 Role of Hormones and Growth Regulators in Assimilate Movement.- 3.1 Effect of Plant Hormones on Partition of Assimilates.- 3.2 Partition Between Roots and Shoots.- 3.3 Assimilate Partition Within the Shoot System.- 3.4 Mobilization of Assimilates into Fruits.- 3.5 Import of Assimilates into Expanded Leaves.- 3.6 Export of Assimilates When Leaves or Shoots Are Pretreated with Growth Substances.- 3.7 Time-Course Studies on Hormone-Induced Movement of 14C Assimilates.- 3.8 Effect of Hormone Concentration of Translocation.- 3.9 Interaction of Different Hormones on Hormone-Directed Transport.- 3.10 Effect of Water Relations on Auxin-Induced Mobilization.- 3.11 Roots as a Sink.- 3.12 Auxin and Senescence.- 3.13 Effect of Hormones on Mineral Nutrient Uptake.- 4 Possible Regulatory Points for Hormone-Directed Transport.- 4.1 Hormonal Regulation of Assimilate Movement at the Level of Source-Path-Sink.- 4.1.1 Time Between Treatments and Response.- 4.1.2 Effects on Nonelongating Tissues.- 4.1.3 Relationship Between the Lag Period and the Distance Moved by the Hormone.- 4.1.4 Polar Auxin Transport-Inhibitor Studies.- 4.1.5 Inhibitor Studies of Protein Synthesis and Nucleic Acid Metabolism (NAM).- 4.1.6 Metabolism and Accumulation Studies.- 4.1.7 Long-Distance Transport.- 4.1.8 Distinguishing Between Hormonal Effects on Sink Strength and Phloem Transport Processes.- 4.1.9 Rates of Photosynthesis, Export Rates of Assimilates and Changes in the Mobilizing Abilities Between Competing Sinks.- 5 Hormonal Regulation of Photosynthate Supply.- 6 Conclusions.- References.- Time-Related Factors and Phenomena.- 2 Rhythms and Their Relations to Hormones.- 1 Introduction.- 1.1 General.- 1.2 Plant Development.- 2 Bioperiodicities.- 2.1 Rhythm Characteristics.- 2.2 Ultradian Rhythms.- 2.3 Circadian Rhythms.- 2.4 Infradian Rhythms.- 2.5 Rhythm Interrelationships.- 3 Photoperiodism.- 4 Rhythms: Endogenous Hormones.- 5 Rhythms: Exogenous Growth Regulators.- 5.1 Auxins.- 5.1.1 Auxin Transport.- 5.1.2 Tropisms.- 5.1.3 Leaf Movements.- 5.2 Abscisic Acid, Cytokinins, Ethylene, and Gibberellins.- 5.3 Herbicides.- 6 Mechanisms.- 6.1 Chemical Oscillations.- 6.2 Transport.- 6.3 Enzymes.- 6.4 Ions and Membranes.- 7 Role of Rhythms in the Life of the Plant.- 7.1 Avoidance of Pathological Effects.- 7.2 Adaptive Significance.- 7.3 Organization in Time.- 8 Conclusions.- References.- Addendum: Turgorins.- 3 Hormonal Aspects of Phase Change and Precocious Flowering.- 1 Introduction.- 2 Factors Affecting Characteristics Associated with Juvenility.- 2.1 Inability to Flower.- 2.2 Ability to Initiate Adventitious Roots.- 2.3 Other Manifestations of Phase Change.- 3 Compositional Differences Between Juvenile and Adult Phases.- 3.1 Nucleic Acids.- 3.2 Proteins.- 3.3 Rooting Cofactors.- 3.4 Gibberellins.- 3.5 AbscisicAcid.- 3.6 Cytokinins.- 3.7 Sterols.- 4 Juvenile to Adult Phase Change and Its Reversibility.- 4.1 Influence of Cultural Techniques on Maturation.- 4.2 Reversions in Various Characteristics from Mature to Juvenile Phase.- 5 Tissue and Organ Culture of Juvenile and Adult Phases.- 6 Effect of Genotype on Length of the Juvenile Period.- 7 Summary and Conclusions.- References.- Direction.- 4 Polarity.- 1 Introduction.- 2 Single-Cell Systems.- 2.1 Fucoid Cells.- 2.2 Ochromonas.- 2.3 Single Cell Systems of Higher Plants.- 3 Muliple Cell Systems.- 3.1 Dictyostelium.- 3.2 Higher Plant Systems.- 3.2.1 Embryogenesis in Seed Plants.- 3.2.2 Growth, Development and Regeneration in Higher Plants.- 4 Models for Polarity.- 5 Conclusions.- References.- 5 Epinasty, Hyponasty, and Related Topics.- 1 Introduction.- 2 Epinasty in Response to Chemical Application.- 2.1 Ethylene and Ethrel.- 2.1.1 Leaves and Leaf Petioles.- 2.1.2 Stems.- 2.2 Auxins and Herbicides.- 2.2.1 Leaves.- 2.2.2 Stems.- 2.3 Gibberellins.- 2.4 Miscellaneous Chemicals.- 2.4.1 Brassins.- 2.4.2 Halogenated Phenolics.- 2.4.3 Morphactins and Malformin.- 3 Epinastic and Hyponastic Responses to Parasitic Microorganisms.- 4 Epinasty Induced by Physical Factors.- 4.1 Light.- 4.1.1 Wavelength.- 4.1.2 Intensity.- 4.2 Gravity.- 4.3 Waterlogging.- 5 Hormonal Theories.- 5.1 Laterial Shoots and Leaf Petioles.- 5.1.1 Auxin Direction.- 5.1.2 Differential Sensitivity.- 5.2 Plumular Hook Formation.- 5.3 Hyponasty.- 6 Concluding Remarks.- References.- 6 Position as a Factor in Growth and Development Effects.- 1 Introduction.- 2 The Nature of the Positional Signal.- 2.1 Compartmentation and the Availability of Growth Substrates.- 2.2 Some Salient Observations and Experiments on the Control of Cambial Growth.- 2.2.1 Growth in Relation to Position on the Bole.- 2.2.2 Growth of the Basal Taper and Buttresses of Tree Trunks.- 2.2.3 Inhibition of Cambial Growth.- 2.2.4 Growth Effects of Ringing or Girdling.- 2.2.5 A Possible Mechanism for Girdling Effects and Implications for the Positional Signal.- 3 Regulation of Sinks and Competition by the Positional Signal.- 3.1 Dependent or Induced Sinks.- 3.2 Autonomous or Uninduced Sinks.- 3.3 Competition Between Dependent and Autonomous Sinks.- 3.4 The Role of Ethylene.- 4 Propagation of the Positional Signal.- 4.1 The Descending Component.- 4.1.1 Sources of Positional Hormones in the Tops of Plants.- 4.1.2 Contribution of the Phloem.- 4.2 The Ascending Component.- 4.2.1 Roots as a Source of Hormones.- 4.2.2 Contribution of the Xylem.- 5 Conclusion.- References.- II: Factors External to the Plant Gravity.- Gravity.- 7 Roles of Hormones, Protons and Calcium in Geotropism.- 1 Introduction.- 2 Patterns of Response.- 2.1 Relevance of Kinetic Data.- 2.2 Difficulties of Temporally Separating Sequelae.- 2.3 Distribution of Receptivity.- 2.4 Patterns of Differential Growth.- 3 Hormonal Participation.- 3.1 Generalities About Roots and Shoots.- 3.2 Shoots.- 3.2.1 Perspective.- 3.2.2 Auxin.- 3.2.2.1 Establishing the Occurrence of Lateral Transport.- 3.2.2.2 The Time-Course of Lateral Transport.- 3.2.2.3 The Time-Course of Auxin-Induced Growth.- 3.2.2.4 Mature Shoots of Grass.- 3.2.2.5 Plagiogeotropism.- 3.2.3 Proton Secretion andVoltage Gradients.- 3.2.3.1 Perspective.- 3.2.3.2 Proton Asymmetry.- 3.2.3.3 Electrical Asymmetry.- 3.2.4 Gibberellins.- 3.2.4.1 Young, Orthogenotropic Shoots.- 3.2.4.2 Mature Shoots of Grass.- 3.2.4.3 Plagiogeotropic Systems.- 3.2.4.4 Overview.- 3.2.5 AbscisicAcid.- 3.2.6 Ethylene.- 3.2.6.1 Roles in Primary Curvature.- 3.2.6.2 Counter-Reactive Role.- 3.2.6.3 The Rationale for Counter-Reaction.- 3.2.6.4 Plagiogeotropism.- 3.2.7 Calcium (and Potassium and Phosphate).- 3.2.8 A Preliminary Model for the Roles of Calcium in Response to Gravity, Friction and Flexure.- 3.2.8.1 Current Concepts in Calcium Physiology.- 3.2.8.2 Reception.- 3.2.8.3 Activation of an Auxin Carrier.- 3.2.8.4 Electrochemical Migration of Calcium Across the Organ.- 3.2.8.5 The Vacuole as a Source of Cytosilic and Apoplastic Calcium.- 3.2.8.6 The Early Phase of Curvature.- 3.2.8.7 A Counter-Reaction.- 3.2.8.8 Membrane Deformation Resulting from Friction and Flexure.- 3.2.8.9 Crosstalk Between Geotropism and Response to Friction and Flexure.- 3.2.8.10 Auxin Regulation of Ethylene Synthesis via Cytosolic Calcium.- 3.2.8.11 Another Counter-Reaction.- 3.2.8.12 Alternative Models.- 3.2.9 More Factors and Asymmetries.- 3.2.9.1 Chemical Substances.- 3.2.9.2 Phloem Translocation.- 3.2.9.3 Transpiration.- 3.2.10 Differential Growth, and Recent Cavils About Its Control by Hormones.- 3.3 Roots.- 3.3.1 Perspective.- 3.3.2 Calcium in the Cap.- 3.3.3 Auxin.- 3.3.4 Connection Between Calcium in the Tip and Development of IAA Asymmetry.- 3.3.5 Ethylene.- 3.3.6 Protons.- 3.3.7 Secondary Asymmetries: Reaction and Counter-Reaction.- 3.3.7.1 Calcium in the Elongation Zone.- 3.3.7.2 Gibberellin and Other Hormones.- 3.3.7.3 "Adaptation".- 3.3.8 Light, Inhibitors, and the Effect of Light on Inhibitors.- 3.3.9 Summary.- 4 Concluding Remarks.- References.- Light.- 8 De-Etiolation and Plant Hormones.- 1 Introduction.- 2 Auxins.- 2.1 Light and Auxin Transport.- 2.2 Light and Auxin Metabolism.- 3 Gibberellins.- 3.1 Cereal Leaf Growth.- 3.2 Photocontrol of Stem Extension.- 4 Ethylene.- 5 Cytokinins.- 6 Abscisic Acid and Other Inhibitors.- 7 Concluding Remarks.- References.- 9 Photoperiod and Hormones.- 1 General Concepts of Photoperiodism.- 1.1 Range of Responses.- 1.2 The Role of Leaves.- 1.3 Photoperception and the Photoperiodic Mechanism.- 1.3.1 Long-Night Processes.- 1.3.2 Long-Day Processes.- 2 Vegetative Growth: Stem Elongation.- 2.1 Rosette Plants.- 2.1.1 Gibberellins.- 2.1.2 Inhibitors.- 2.2 Caulescent Plants.- 3 Dormancy Phenomena.- 3.1 Storage Organs.- 3.1.1 Cytokinins.- 3.1.2 Inhibitors.- 3.1.3 Gibberellins.- 3.1.4 Auxins.- 3.1.5 Ethylene.- 3.1.6 Steroids.- 3.1.7 Conclusions.- 3.2 Resting Buds.- 3.2.1 Growth Inhibitors.- 3.2.2 Gibberellins.- 3.2.3 Cytokinins.- 4 Reproductive Behavior.- 4.1 Initiation of Floral Primordia.- 4.1.1 Florigen.- 4.1.2 Flower-Inhibiting Substances.- 4.1.3 Gibberellins.- 4.1.4 Abscisic Acid and Xanthoxin.- 4.1.5 Cytokinins.- 4.1.6 Auxin and Ethylene.- 4.1.7 Steroids.- 4.1.8 Conclusions.- References.- 10 Roles of Hormones in Phototropism.- 1 Introduction.- 2 Phototropic Phenomena.- 2.1 Overview: Dark-Grown Seedlings.- 2.2 Overview: Green Shoots.- 2.3 A Relatively Thorough Dose-Response Study.- 2.3.1 General Aspects.- 2.3.2 Regions of the Dose-Response Domain.- 2.3.3 A Unified View.- 2.3.4 Some Unexplained Problems.- 3 Hormonal Basis of Phototropism.- 3.1 Auxin.- 3.1.1 Dark-Grown Seedlings.- 3.1.2 Light-Grown Dicots.- 3.1.2.1 Auxin in the Stem.- 3.1.2.2 Auxin from Leaves.- 3.1.3 Mechanism of Auxin Transport.- 3.1.3.1 Basipetal Transport.- 3.1.3.2 Two Proposals for the Origin of Lateral Asymmetry.- 3.1.3.3 Experiments on Net Basipetal Transport.- 3.2 Gibberellins.- 3.3 Calcium and Other Agents and Effects.- 3.4 Conclusion.- References.- Temperature.- 11 Plant Growth Regulators and Low Temperature Stress.- 1.Introduction.- 2.Freezing Stress - Background Information.- 3.Dormancy and Cold Acclimation.- 4.Interrelations of Hormones with Freezing Stress.- 4.1 Translocatable Factors in Cold Acclimation.- 4.2 Evidence that Translocatable Factors Are Hormones.- 4.3 Effects of Hormones on Cold Acclimation.- 4.4 Exogenous Application of Synthetic Growth Regulators that Affect Cold Hardiness.- 5 The Relationship Between Chilling and Growth Regulators.- 6 The Relationship Between Deacclimation and Growth Regulators.- 7 Summary.- References.- Wind and Other Mechanical Factors.- 12 Wind and Other Mechanical Effects in the Development and Behavior of Plants, with Special Emphasis on the Role of Hormones.- 1 Introduction.- 2 Thigmonasty.- 2.1 The Thigmonastic Leaves of the Sensitive Mimosa and the Venus' Fly Trap.- 2.1.1 Sensitive Mimosa.- 2.1.2 Venus'I: Factors Internal to the Plant.- Nutrients.- 1 Relation of Hormones to Nutrient Mobilization and the Internal Environment of the Plant: The Supply of Mineral Nutrients and Photosynthate.- 1 Introduction.- 2 Sources, Sinks, and Assimilate Movement in Relation to Morphology.- 2.1 Definitions of Source and Sink.- 2.2 Position Centers of Assimilate Production.- 2.3 Strength of the Sinks.- 2.4 Patterns of Distribution of Assimilates in Relation to Vascular Connections.- 2.5 The Demand for Assimilates.- 3 Role of Hormones and Growth Regulators in Assimilate Movement.- 3.1 Effect of Plant Hormones on Partition of Assimilates.- 3.2 Partition Between Roots and Shoots.- 3.3 Assimilate Partition Within the Shoot System.- 3.4 Mobilization of Assimilates into Fruits.- 3.5 Import of Assimilates into Expanded Leaves.- 3.6 Export of Assimilates When Leaves or Shoots Are Pretreated with Growth Substances.- 3.7 Time-Course Studies on Hormone-Induced Movement of 14C Assimilates.- 3.8 Effect of Hormone Concentration of Translocation.- 3.9 Interaction of Different Hormones on Hormone-Directed Transport.- 3.10 Effect of Water Relations on Auxin-Induced Mobilization.- 3.11 Roots as a Sink.- 3.12 Auxin and Senescence.- 3.13 Effect of Hormones on Mineral Nutrient Uptake.- 4 Possible Regulatory Points for Hormone-Directed Transport.- 4.1 Hormonal Regulation of Assimilate Movement at the Level of Source-Path-Sink.- 4.1.1 Time Between Treatments and Response.- 4.1.2 Effects on Nonelongating Tissues.- 4.1.3 Relationship Between the Lag Period and the Distance Moved by the Hormone.- 4.1.4 Polar Auxin Transport-Inhibitor Studies.- 4.1.5 Inhibitor Studies of Protein Synthesis and Nucleic Acid Metabolism (NAM).- 4.1.6 Metabolism and Accumulation Studies.- 4.1.7 Long-Distance Transport.- 4.1.8 Distinguishing Between Hormonal Effects on Sink Strength and Phloem Transport Processes.- 4.1.9 Rates of Photosynthesis, Export Rates of Assimilates and Changes in the Mobilizing Abilities Between Competing Sinks.- 5 Hormonal Regulation of Photosynthate Supply.- 6 Conclusions.- References.- Time-Related Factors and Phenomena.- 2 Rhythms and Their Relations to Hormones.- 1 Introduction.- 1.1 General.- 1.2 Plant Development.- 2 Bioperiodicities.- 2.1 Rhythm Characteristics.- 2.2 Ultradian Rhythms.- 2.3 Circadian Rhythms.- 2.4 Infradian Rhythms.- 2.5 Rhythm Interrelationships.- 3 Photoperiodism.- 4 Rhythms: Endogenous Hormones.- 5 Rhythms: Exogenous Growth Regulators.- 5.1 Auxins.- 5.1.1 Auxin Transport.- 5.1.2 Tropisms.- 5.1.3 Leaf Movements.- 5.2 Abscisic Acid, Cytokinins, Ethylene, and Gibberellins.- 5.3 Herbicides.- 6 Mechanisms.- 6.1 Chemical Oscillations.- 6.2 Transport.- 6.3 Enzymes.- 6.4 Ions and Membranes.- 7 Role of Rhythms in the Life of the Plant.- 7.1 Avoidance of Pathological Effects.- 7.2 Adaptive Significance.- 7.3 Organization in Time.- 8 Conclusions.- References.- Addendum: Turgorins.- 3 Hormonal Aspects of Phase Change and Precocious Flowering.- 1 Introduction.- 2 Factors Affecting Characteristics Associated with Juvenility.- 2.1 Inability to Flower.- 2.2 Ability to Initiate Adventitious Roots.- 2.3 Other Manifestations of Phase Change.- 3 Compositional Differences Between Juvenile and Adult Phases.- 3.1 Nucleic Acids.- 3.2 Proteins.- 3.3 Rooting Cofactors.- 3.4 Gibberellins.- 3.5 AbscisicAcid.- 3.6 Cytokinins.- 3.7 Sterols.- 4 Juvenile to Adult Phase Change and Its Reversibility.- 4.1 Influence of Cultural Techniques on Maturation.- 4.2 Reversions in Various Characteristics from Mature to Juvenile Phase.- 5 Tissue and Organ Culture of Juvenile and Adult Phases.- 6 Effect of Genotype on Length of the Juvenile Period.- 7 Summary and Conclusions.- References.- Direction.- 4 Polarity.- 1 Introduction.- 2 Single-Cell Systems.- 2.1 Fucoid Cells.- 2.2 Ochromonas.- 2.3 Single Cell Systems of Higher Plants.- 3 Muliple Cell Systems.- 3.1 Dictyostelium.- 3.2 Higher Plant Systems.- 3.2.1 Embryogenesis in Seed Plants.- 3.2.2 Growth, Development and Regeneration in Higher Plants.- 4 Models for Polarity.- 5 Conclusions.- References.- 5 Epinasty, Hyponasty, and Related Topics.- 1 Introduction.- 2 Epinasty in Response to Chemical Application.- 2.1 Ethylene and Ethrel.- 2.1.1 Leaves and Leaf Petioles.- 2.1.2 Stems.- 2.2 Auxins and Herbicides.- 2.2.1 Leaves.- 2.2.2 Stems.- 2.3 Gibberellins.- 2.4 Miscellaneous Chemicals.- 2.4.1 Brassins.- 2.4.2 Halogenated Phenolics.- 2.4.3 Morphactins and Malformin.- 3 Epinastic and Hyponastic Responses to Parasitic Microorganisms.- 4 Epinasty Induced by Physical Factors.- 4.1 Light.- 4.1.1 Wavelength.- 4.1.2 Intensity.- 4.2 Gravity.- 4.3 Waterlogging.- 5 Hormonal Theories.- 5.1 Laterial Shoots and Leaf Petioles.- 5.1.1 Auxin Direction.- 5.1.2 Differential Sensitivity.- 5.2 Plumular Hook Formation.- 5.3 Hyponasty.- 6 Concluding Remarks.- References.- 6 Position as a Factor in Growth and Development Effects.- 1 Introduction.- 2 The Nature of the Positional Signal.- 2.1 Compartmentation and the Availability of Growth Substrates.- 2.2 Some Salient Observations and Experiments on the Control of Cambial Growth.- 2.2.1 Growth in Relation to Position on the Bole.- 2.2.2 Growth of the Basal Taper and Buttresses of Tree Trunks.- 2.2.3 Inhibition of Cambial Growth.- 2.2.4 Growth Effects of Ringing or Girdling.- 2.2.5 A Possible Mechanism for Girdling Effects and Implications for the Positional Signal.- 3 Regulation of Sinks and Competition by the Positional Signal.- 3.1 Dependent or Induced Sinks.- 3.2 Autonomous or Uninduced Sinks.- 3.3 Competition Between Dependent and Autonomous Sinks.- 3.4 The Role of Ethylene.- 4 Propagation of the Positional Signal.- 4.1 The Descending Component.- 4.1.1 Sources of Positional Hormones in the Tops of Plants.- 4.1.2 Contribution of the Phloem.- 4.2 The Ascending Component.- 4.2.1 Roots as a Source of Hormones.- 4.2.2 Contribution of the Xylem.- 5 Conclusion.- References.- II: Factors External to the Plant Gravity.- Gravity.- 7 Roles of Hormones, Protons and Calcium in Geotropism.- 1 Introduction.- 2 Patterns of Response.- 2.1 Relevance of Kinetic Data.- 2.2 Difficulties of Temporally Separating Sequelae.- 2.3 Distribution of Receptivity.- 2.4 Patterns of Differential Growth.- 3 Hormonal Participation.- 3.1 Generalities About Roots and Shoots.- 3.2 Shoots.- 3.2.1 Perspective.- 3.2.2 Auxin.- 3.2.2.1 Establishing the Occurrence of Lateral Transport.- 3.2.2.2 The Time-Course of Lateral Transport.- 3.2.2.3 The Time-Course of Auxin-Induced Growth.- 3.2.2.4 Mature Shoots of Grass.- 3.2.2.5 Plagiogeotropism.- 3.2.3 Proton Secretion andVoltage Gradients.- 3.2.3.1 Perspective.- 3.2.3.2 Proton Asymmetry.- 3.2.3.3 Electrical Asymmetry.- 3.2.4 Gibberellins.- 3.2.4.1 Young, Orthogenotropic Shoots.- 3.2.4.2 Mature Shoots of Grass.- 3.2.4.3 Plagiogeotropic Systems.- 3.2.4.4 Overview.- 3.2.5 AbscisicAcid.- 3.2.6 Ethylene.- 3.2.6.1 Roles in Primary Curvature.- 3.2.6.2 Counter-Reactive Role.- 3.2.6.3 The Rationale for Counter-Reaction.- 3.2.6.4 Plagiogeotropism.- 3.2.7 Calcium (and Potassium and Phosphate).- 3.2.8 A Preliminary Model for the Roles of Calcium in Response to Gravity, Friction and Flexure.- 3.2.8.1 Current Concepts in Calcium Physiology.- 3.2.8.2 Reception.- 3.2.8.3 Activation of an Auxin Carrier.- 3.2.8.4 Electrochemical Migration of Calcium Across the Organ.- 3.2.8.5 The Vacuole as a Source of Cytosilic and Apoplastic Calcium.- 3.2.8.6 The Early Phase of Curvature.- 3.2.8.7 A Counter-Reaction.- 3.2.8.8 Membrane Deformation Resulting from Friction and Flexure.- 3.2.8.9 Crosstalk Between Geotropism and Response to Friction and Flexure.- 3.2.8.10 Auxin Regulation of Ethylene Synthesis via Cytosolic Calcium.- 3.2.8.11 Another Counter-Reaction.- 3.2.8.12 Alternative Models.- 3.2.9 More Factors and Asymmetries.- 3.2.9.1 Chemical Substances.- 3.2.9.2 Phloem Translocation.- 3.2.9.3 Transpiration.- 3.2.10 Differential Growth, and Recent Cavils About Its Control by Hormones.- 3.3 Roots.- 3.3.1 Perspective.- 3.3.2 Calcium in the Cap.- 3.3.3 Auxin.- 3.3.4 Connection Between Calcium in the Tip and Development of IAA Asymmetry.- 3.3.5 Ethylene.- 3.3.6 Protons.- 3.3.7 Secondary Asymmetries: Reaction and Counter-Reaction.- 3.3.7.1 Calcium in the Elongation Zone.- 3.3.7.2 Gibberellin and Other Hormones.- 3.3.7.3 "Adaptation".- 3.3.8 Light, Inhibitors, and the Effect of Light on Inhibitors.- 3.3.9 Summary.- 4 Concluding Remarks.- References.- Light.- 8 De-Etiolation and Plant Hormones.- 1 Introduction.- 2 Auxins.- 2.1 Light and Auxin Transport.- 2.2 Light and Auxin Metabolism.- 3 Gibberellins.- 3.1 Cereal Leaf Growth.- 3.2 Photocontrol of Stem Extension.- 4 Ethylene.- 5 Cytokinins.- 6 Abscisic Acid and Other Inhibitors.- 7 Concluding Remarks.- References.- 9 Photoperiod and Hormones.- 1 General Concepts of Photoperiodism.- 1.1 Range of Responses.- 1.2 The Role of Leaves.- 1.3 Photoperception and the Photoperiodic Mechanism.- 1.3.1 Long-Night Processes.- 1.3.2 Long-Day Processes.- 2 Vegetative Growth: Stem Elongation.- 2.1 Rosette Plants.- 2.1.1 Gibberellins.- 2.1.2 Inhibitors.- 2.2 Caulescent Plants.- 3 Dormancy Phenomena.- 3.1 Storage Organs.- 3.1.1 Cytokinins.- 3.1.2 Inhibitors.- 3.1.3 Gibberellins.- 3.1.4 Auxins.- 3.1.5 Ethylene.- 3.1.6 Steroids.- 3.1.7 Conclusions.- 3.2 Resting Buds.- 3.2.1 Growth Inhibitors.- 3.2.2 Gibberellins.- 3.2.3 Cytokinins.- 4 Reproductive Behavior.- 4.1 Initiation of Floral Primordia.- 4.1.1 Florigen.- 4.1.2 Flower-Inhibiting Substances.- 4.1.3 Gibberellins.- 4.1.4 Abscisic Acid and Xanthoxin.- 4.1.5 Cytokinins.- 4.1.6 Auxin and Ethylene.- 4.1.7 Steroids.- 4.1.8 Conclusions.- References.- 10 Roles of Hormones in Phototropism.- 1 Introduction.- 2 Phototropic Phenomena.- 2.1 Overview: Dark-Grown Seedlings.- 2.2 Overview: Green Shoots.- 2.3 A Relatively Thorough Dose-Response Study.- 2.3.1 General Aspects.- 2.3.2 Regions of the Dose-Response Domain.- 2.3.3 A Unified View.- 2.3.4 Some Unexplained Problems.- 3 Hormonal Basis of Phototropism.- 3.1 Auxin.- 3.1.1 Dark-Grown Seedlings.- 3.1.2 Light-Grown Dicots.- 3.1.2.1 Auxin in the Stem.- 3.1.2.2 Auxin from Leaves.- 3.1.3 Mechanism of Auxin Transport.- 3.1.3.1 Basipetal Transport.- 3.1.3.2 Two Proposals for the Origin of Lateral Asymmetry.- 3.1.3.3 Experiments on Net Basipetal Transport.- 3.2 Gibberellins.- 3.3 Calcium and Other Agents and Effects.- 3.4 Conclusion.- References.- Temperature.- 11 Plant Growth Regulators and Low Temperature Stress.- 1.Introduction.- 2.Freezing Stress - Background Information.- 3.Dormancy and Cold Acclimation.- 4.Interrelations of Hormones with Freezing Stress.- 4.1 Translocatable Factors in Cold Acclimation.- 4.2 Evidence that Translocatable Factors Are Hormones.- 4.3 Effects of Hormones on Cold Acclimation.- 4.4 Exogenous Application of Synthetic Growth Regulators that Affect Cold Hardiness.- 5 The Relationship Between Chilling and Growth Regulators.- 6 The Relationship Between Deacclimation and Growth Regulators.- 7 Summary.- References.- Wind and Other Mechanical Factors.- 12 Wind and Other Mechanical Effects in the Development and Behavior of Plants, with Special Emphasis on the Role of Hormones.- 1 Introduction.- 2 Thigmonasty.- 2.1 The Thigmonastic Leaves of the Sensitive Mimosa and the Venus' Fly Trap.- 2.1.1 Sensitive Mimosa.- 2.1.2 Venus'Fly Trap.- 2.2 Thigmonastic Flower Parts.- 2.3 Aquatic Thigmonastic Plants.- 2.3.1 Aldrovanda.- 2.3.2 Nematode Trapping Fungi.- 2.4 Plant Tendrils.- 2.5 Sundew.- 3 Thigmotropism.- 3.1 Thigmotropic Roots and Shoots.- 3.2 Thigmotropic Stamens.- 3.3 Thigmotropism in Fungi.- 4 Thigmomorphogenesis.- 4.1 Thigmomorphogenesis in Fungi.- 4.2 Thigmomorphogenesis in Vascular Plants.- 4.2.1 The Ecological Significance of Thigmomorphogenesis.- 4.2.2 The Time Course of Thigmomorphogenesis.- 4.2.2.1 Histological Studies.- 4.2.3 Integrative Mechanisms in Thigmomorphogenesis.- 4.2.3.1 Action Potentials.- 4.2.3.2 The Role of Ethylene.- 4.2.3.3 The Role of Auxin.- 4.2.3.4 The Role of Translocation and Transpiration.- 4.2.4 Photosynthesis, Respiration, and Metabolism.- 4.2.5 Interaction of Mechanical Stimulation with Other Environmental Cues.- 5 Conclusions.- References.- 13 Hormonal Control of Wound-Induced Responses.- 1 Introduction.- 2 Formation of Protective Materials.- 2.1 Suberization or Cutin Formation at the Wound Surface.- 2.2 Lignification.- 3 Wound-Induced Cell Division and Its Hormonal Control.- 4 Organized Wound Response.- 4.1 Vascular Element Differentiation.- 4.2 Root Formation on Stem Cuttings.- 5 Biochemical Activation of Wound-Affected Cells.- 5.1 Factors Affecting Wound-Induced Metabolic Changes.- 5.2 Wound-Induced Change in Hormone Levels.- 6 Conclusion.- References.- 14 Water Relations and Plant Hormones.- 1 Introduction.- 2 Insufficient Water.- 2.1 Causes of Drought.- 2.2 Some Problems in Interpreting the Literature.- 2.3 Control Points for Water Loss and Gain.- 2.4 Sequence of Responses to Water Stress.- 2.4.1 The Initial Response.- 2.4.2 Later Responses.- 2.5 Drought Induced Changes in Levels of Hormone: Effects on Stomatal Functioning.- 2.5.1 Gibberellins and Stomates.- 2.5.2 Auxins and Stomates.- 2.5.3 Ethylene and Stomates.- 2.5.4 Cytokinins and Stomates.- 2.5.5 ABA and Stomatal Closure.- 2.5.6 ABA and Stomatal Opening.- 2.5.7 Summary of Section 2.5.- 2.6 Water Uptake and Movement Through Roots.- 2.6.1 Drought and Hormone Levels in Roots.- 2.6.2 Effects of Hormones and Nutrient Redistribution and ? of Roots.- 2.6.3 Effects of Hormones and Ion Transport.- 2.7 Other Mechanisms Controlling Water Status of the Plant.- 2.7.1 Reduced Growth Rate.- 2.7.2 Root Growth and Development.- 2.7.3 Leaf Morphology and Behavior.- 2.7.4 Flowering and Reproductive Development.- 2.7.5 Summary of Sections 2.7.1 to 2.7.4.- 2.7.6 Water Stress and CO2 Assimilation.- 2.7.7 Osmoregulation.- 3 Excess Water.- 3.1 Morphological Effect of Flooding.- 3.2 Causes of Flood-Induced Morphological Changes.- 3.3 Cytokinins.- 3.4 AbscisicAcid.- 3.5 Gibberellins.- 3.6 Auxins.- 3.7 Ethylene and Its Interaction with Auxins.- 3.8 Hormones and Photosynthate Transport and Partitioning.- 3.9 Summary of Section 3.- References.- Organisms.- 15 Pollen. Symbionts and Symbiont-Induced Structures.- 1 Pollen.- 1.1 Effect of Hormones on Pollen Germination and Tube Growth.- 1.2 Hormonal Composition of Pollen.- 1.3 Pollen, Hormones, and Fruit Set.- 2 Symbionts and Symbiont-Induced Structures.- 2.1 Nitrogen-Fixing Associations.- 2.1.1 Auxins.- 2.1.2 Gibberellins.- 2.1.3 Cytokinins.- 2.1.4 Interaction of Growth Substances in Nodule Development.- 2.2 Mycorrhizae.- References.- 16 Pathogenic and Non-pathogenic Microorganisms and Insects.- 1 Hormones and Microorganisms.- 1.1 Ethylene.- 1.1.1 Fungal Production of Ethylene.- 1.1.2 Bacterial Production of Ethylene.- 1.1.3 Biosynthesis of Ethylene.- 1.1.4 Ethylene and Plant Pathogenesis.- 1.2 Auxins.- 1.2.1 Fungal Production of Auxins.- 1.2.2 Effects of Auxins of Fungal Growth.- 1.2.3 Bacterial Production of Auxins.- 1.3 Cytokinins.- 1.3.1 Bacterial Production of Cytokinins.- 1.3.2 Fungal Production of Cytokinins.- 1.4 Gibberellins.- 1.4.1 Fungal Production of GA's.- 1.4.2 Bacterial Production of GA'#8217
- Fly Trap.- 2.2 Thigmonastic Flower Parts.- 2.3 Aquatic Thigmonastic Plants.- 2.3.1 Aldrovanda.- 2.3.2 Nematode Trapping Fungi.- 2.4 Plant Tendrils.- 2.5 Sundew.- 3 Thigmotropism.- 3.1 Thigmotropic Roots and Shoots.- 3.2 Thigmotropic Stamens.- 3.3 Thigmotropism in Fungi.- 4 Thigmomorphogenesis.- 4.1 Thigmomorphogenesis in Fungi.- 4.2 Thigmomorphogenesis in Vascular Plants.- 4.2.1 The Ecological Significance of Thigmomorphogenesis.- 4.2.2 The Time Course of Thigmomorphogenesis.- 4.2.2.1 Histological Studies.- 4.2.3 Integrative Mechanisms in Thigmomorphogenesis.- 4.2.3.1 Action Potentials.- 4.2.3.2 The Role of Ethylene.- 4.2.3.3 The Role of Auxin.- 4.2.3.4 The Role of Translocation and Transpiration.- 4.2.4 Photosynthesis, Respiration, and Metabolism.- 4.2.5 Interaction of Mechanical Stimulation with Other Environmental Cues.- 5 Conclusions.- References.- 13 Hormonal Control of Wound-Induced Responses.- 1 Introduction.- 2 Formation of Protective Materials.- 2.1 Suberization or Cutin Formation at the Wound Surface.- 2.2 Lignification.- 3 Wound-Induced Cell Division and Its Hormonal Control.- 4 Organized Wound Response.- 4.1 Vascular Element Differentiation.- 4.2 Root Formation on Stem Cuttings.- 5 Biochemical Activation of Wound-Affected Cells.- 5.1 Factors Affecting Wound-Induced Metabolic Changes.- 5.2 Wound-Induced Change in Hormone Levels.- 6 Conclusion.- References.- 14 Water Relations and Plant Hormones.- 1 Introduction.- 2 Insufficient Water.- 2.1 Causes of Drought.- 2.2 Some Problems in Interpreting the Literature.- 2.3 Control Points for Water Loss and Gain.- 2.4 Sequence of Responses to Water Stress.- 2.4.1 The Initial Response.- 2.4.2 Later Responses.- 2.5 Drought Induced Changes in Levels of Hormone: Effects on Stomatal Functioning.- 2.5.1 Gibberellins and Stomates.- 2.5.2 Auxins and Stomates.- 2.5.3 Ethylene and Stomates.- 2.5.4 Cytokinins and Stomates.- 2.5.5 ABA and Stomatal Closure.- 2.5.6 ABA and Stomatal Opening.- 2.5.7 Summary of Section 2.5.- 2.6 Water Uptake and Movement Through Roots.- 2.6.1 Drought and Hormone Levels in Roots.- 2.6.2 Effects of Hormones and Nutrient Redistribution and ? of Roots.- 2.6.3 Effects of Hormones and Ion Transport.- 2.7 Other Mechanisms Controlling Water Status of the Plant.- 2.7.1 Reduced Growth Rate.- 2.7.2 Root Growth and Development.- 2.7.3 Leaf Morphology and Behavior.- 2.7.4 Flowering and Reproductive Development.- 2.7.5 Summary of Sections 2.7.1 to 2.7.4.- 2.7.6 Water Stress and CO2 Assimilation.- 2.7.7 Osmoregulation.- 3 Excess Water.- 3.1 Morphological Effect of Flooding.- 3.2 Causes of Flood-Induced Morphological Changes.- 3.3 Cytokinins.- 3.4 AbscisicAcid.- 3.5 Gibberellins.- 3.6 Auxins.- 3.7 Ethylene and Its Interaction with Auxins.- 3.8 Hormones and Photosynthate Transport and Partitioning.- 3.9 Summary of Section 3.- References.- Organisms.- 15 Pollen. Symbionts and Symbiont-Induced Structures.- 1 Pollen.- 1.1 Effect of Hormones on Pollen Germination and Tube Growth.- 1.2 Hormonal Composition of Pollen.- 1.3 Pollen, Hormones, and Fruit Set.- 2 Symbionts and Symbiont-Induced Structures.- 2.1 Nitrogen-Fixing Associations.- 2.1.1 Auxins.- 2.1.2 Gibberellins.- 2.1.3 Cytokinins.- 2.1.4 Interaction of Growth Substances in Nodule Development.- 2.2 Mycorrhizae.- References.- 16 Pathogenic and Non-pathogenic Microorganisms and Insects.- 1 Hormones and Microorganisms.- 1.1 Ethylene.- 1.1.1 Fungal Production of Ethylene.- 1.1.2 Bacterial Production of Ethylene.- 1.1.3 Biosynthesis of Ethylene.- 1.1.4 Ethylene and Plant Pathogenesis.- 1.2 Auxins.- 1.2.1 Fungal Production of Auxins.- 1.2.2 Effects of Auxins of Fungal Growth.- 1.2.3 Bacterial Production of Auxins.- 1.3 Cytokinins.- 1.3.1 Bacterial Production of Cytokinins.- 1.3.2 Fungal Production of Cytokinins.- 1.4 Gibberellins.- 1.4.1 Fungal Production of GA's.- 1.4.2 Bacterial Production of GA'I: Factors Internal to the Plant.- Nutrients.- 1 Relation of Hormones to Nutrient Mobilization and the Internal Environment of the Plant: The Supply of Mineral Nutrients and Photosynthate.- 1 Introduction.- 2 Sources, Sinks, and Assimilate Movement in Relation to Morphology.- 2.1 Definitions of Source and Sink.- 2.2 Position Centers of Assimilate Production.- 2.3 Strength of the Sinks.- 2.4 Patterns of Distribution of Assimilates in Relation to Vascular Connections.- 2.5 The Demand for Assimilates.- 3 Role of Hormones and Growth Regulators in Assimilate Movement.- 3.1 Effect of Plant Hormones on Partition of Assimilates.- 3.2 Partition Between Roots and Shoots.- 3.3 Assimilate Partition Within the Shoot System.- 3.4 Mobilization of Assimilates into Fruits.- 3.5 Import of Assimilates into Expanded Leaves.- 3.6 Export of Assimilates When Leaves or Shoots Are Pretreated with Growth Substances.- 3.7 Time-Course Studies on Hormone-Induced Movement of 14C Assimilates.- 3.8 Effect of Hormone Concentration of Translocation.- 3.9 Interaction of Different Hormones on Hormone-Directed Transport.- 3.10 Effect of Water Relations on Auxin-Induced Mobilization.- 3.11 Roots as a Sink.- 3.12 Auxin and Senescence.- 3.13 Effect of Hormones on Mineral Nutrient Uptake.- 4 Possible Regulatory Points for Hormone-Directed Transport.- 4.1 Hormonal Regulation of Assimilate Movement at the Level of Source-Path-Sink.- 4.1.1 Time Between Treatments and Response.- 4.1.2 Effects on Nonelongating Tissues.- 4.1.3 Relationship Between the Lag Period and the Distance Moved by the Hormone.- 4.1.4 Polar Auxin Transport-Inhibitor Studies.- 4.1.5 Inhibitor Studies of Protein Synthesis and Nucleic Acid Metabolism (NAM).- 4.1.6 Metabolism and Accumulation Studies.- 4.1.7 Long-Distance Transport.- 4.1.8 Distinguishing Between Hormonal Effects on Sink Strength and Phloem Transport Processes.- 4.1.9 Rates of Photosynthesis, Export Rates of Assimilates and Changes in the Mobilizing Abilities Between Competing Sinks.- 5 Hormonal Regulation of Photosynthate Supply.- 6 Conclusions.- References.- Time-Related Factors and Phenomena.- 2 Rhythms and Their Relations to Hormones.- 1 Introduction.- 1.1 General.- 1.2 Plant Development.- 2 Bioperiodicities.- 2.1 Rhythm Characteristics.- 2.2 Ultradian Rhythms.- 2.3 Circadian Rhythms.- 2.4 Infradian Rhythms.- 2.5 Rhythm Interrelationships.- 3 Photoperiodism.- 4 Rhythms: Endogenous Hormones.- 5 Rhythms: Exogenous Growth Regulators.- 5.1 Auxins.- 5.1.1 Auxin Transport.- 5.1.2 Tropisms.- 5.1.3 Leaf Movements.- 5.2 Abscisic Acid, Cytokinins, Ethylene, and Gibberellins.- 5.3 Herbicides.- 6 Mechanisms.- 6.1 Chemical Oscillations.- 6.2 Transport.- 6.3 Enzymes.- 6.4 Ions and Membranes.- 7 Role of Rhythms in the Life of the Plant.- 7.1 Avoidance of Pathological Effects.- 7.2 Adaptive Significance.- 7.3 Organization in Time.- 8 Conclusions.- References.- Addendum: Turgorins.- 3 Hormonal Aspects of Phase Change and Precocious Flowering.- 1 Introduction.- 2 Factors Affecting Characteristics Associated with Juvenility.- 2.1 Inability to Flower.- 2.2 Ability to Initiate Adventitious Roots.- 2.3 Other Manifestations of Phase Change.- 3 Compositional Differences Between Juvenile and Adult Phases.- 3.1 Nucleic Acids.- 3.2 Proteins.- 3.3 Rooting Cofactors.- 3.4 Gibberellins.- 3.5 AbscisicAcid.- 3.6 Cytokinins.- 3.7 Sterols.- 4 Juvenile to Adult Phase Change and Its Reversibility.- 4.1 Influence of Cultural Techniques on Maturation.- 4.2 Reversions in Various Characteristics from Mature to Juvenile Phase.- 5 Tissue and Organ Culture of Juvenile and Adult Phases.- 6 Effect of Genotype on Length of the Juvenile Period.- 7 Summary and Conclusions.- References.- Direction.- 4 Polarity.- 1 Introduction.- 2 Single-Cell Systems.- 2.1 Fucoid Cells.- 2.2 Ochromonas.- 2.3 Single Cell Systems of Higher Plants.- 3 Muliple Cell Systems.- 3.1 Dictyostelium.- 3.2 Higher Plant Systems.- 3.2.1 Embryogenesis in Seed Plants.- 3.2.2 Growth, Development and Regeneration in Higher Plants.- 4 Models for Polarity.- 5 Conclusions.- References.- 5 Epinasty, Hyponasty, and Related Topics.- 1 Introduction.- 2 Epinasty in Response to Chemical Application.- 2.1 Ethylene and Ethrel.- 2.1.1 Leaves and Leaf Petioles.- 2.1.2 Stems.- 2.2 Auxins and Herbicides.- 2.2.1 Leaves.- 2.2.2 Stems.- 2.3 Gibberellins.- 2.4 Miscellaneous Chemicals.- 2.4.1 Brassins.- 2.4.2 Halogenated Phenolics.- 2.4.3 Morphactins and Malformin.- 3 Epinastic and Hyponastic Responses to Parasitic Microorganisms.- 4 Epinasty Induced by Physical Factors.- 4.1 Light.- 4.1.1 Wavelength.- 4.1.2 Intensity.- 4.2 Gravity.- 4.3 Waterlogging.- 5 Hormonal Theories.- 5.1 Laterial Shoots and Leaf Petioles.- 5.1.1 Auxin Direction.- 5.1.2 Differential Sensitivity.- 5.2 Plumular Hook Formation.- 5.3 Hyponasty.- 6 Concluding Remarks.- References.- 6 Position as a Factor in Growth and Development Effects.- 1 Introduction.- 2 The Nature of the Positional Signal.- 2.1 Compartmentation and the Availability of Growth Substrates.- 2.2 Some Salient Observations and Experiments on the Control of Cambial Growth.- 2.2.1 Growth in Relation to Position on the Bole.- 2.2.2 Growth of the Basal Taper and Buttresses of Tree Trunks.- 2.2.3 Inhibition of Cambial Growth.- 2.2.4 Growth Effects of Ringing or Girdling.- 2.2.5 A Possible Mechanism for Girdling Effects and Implications for the Positional Signal.- 3 Regulation of Sinks and Competition by the Positional Signal.- 3.1 Dependent or Induced Sinks.- 3.2 Autonomous or Uninduced Sinks.- 3.3 Competition Between Dependent and Autonomous Sinks.- 3.4 The Role of Ethylene.- 4 Propagation of the Positional Signal.- 4.1 The Descending Component.- 4.1.1 Sources of Positional Hormones in the Tops of Plants.- 4.1.2 Contribution of the Phloem.- 4.2 The Ascending Component.- 4.2.1 Roots as a Source of Hormones.- 4.2.2 Contribution of the Xylem.- 5 Conclusion.- References.- II: Factors External to the Plant Gravity.- Gravity.- 7 Roles of Hormones, Protons and Calcium in Geotropism.- 1 Introduction.- 2 Patterns of Response.- 2.1 Relevance of Kinetic Data.- 2.2 Difficulties of Temporally Separating Sequelae.- 2.3 Distribution of Receptivity.- 2.4 Patterns of Differential Growth.- 3 Hormonal Participation.- 3.1 Generalities About Roots and Shoots.- 3.2 Shoots.- 3.2.1 Perspective.- 3.2.2 Auxin.- 3.2.2.1 Establishing the Occurrence of Lateral Transport.- 3.2.2.2 The Time-Course of Lateral Transport.- 3.2.2.3 The Time-Course of Auxin-Induced Growth.- 3.2.2.4 Mature Shoots of Grass.- 3.2.2.5 Plagiogeotropism.- 3.2.3 Proton Secretion andVoltage Gradients.- 3.2.3.1 Perspective.- 3.2.3.2 Proton Asymmetry.- 3.2.3.3 Electrical Asymmetry.- 3.2.4 Gibberellins.- 3.2.4.1 Young, Orthogenotropic Shoots.- 3.2.4.2 Mature Shoots of Grass.- 3.2.4.3 Plagiogeotropic Systems.- 3.2.4.4 Overview.- 3.2.5 AbscisicAcid.- 3.2.6 Ethylene.- 3.2.6.1 Roles in Primary Curvature.- 3.2.6.2 Counter-Reactive Role.- 3.2.6.3 The Rationale for Counter-Reaction.- 3.2.6.4 Plagiogeotropism.- 3.2.7 Calcium (and Potassium and Phosphate).- 3.2.8 A Preliminary Model for the Roles of Calcium in Response to Gravity, Friction and Flexure.- 3.2.8.1 Current Concepts in Calcium Physiology.- 3.2.8.2 Reception.- 3.2.8.3 Activation of an Auxin Carrier.- 3.2.8.4 Electrochemical Migration of Calcium Across the Organ.- 3.2.8.5 The Vacuole as a Source of Cytosilic and Apoplastic Calcium.- 3.2.8.6 The Early Phase of Curvature.- 3.2.8.7 A Counter-Reaction.- 3.2.8.8 Membrane Deformation Resulting from Friction and Flexure.- 3.2.8.9 Crosstalk Between Geotropism and Response to Friction and Flexure.- 3.2.8.10 Auxin Regulation of Ethylene Synthesis via Cytosolic Calcium.- 3.2.8.11 Another Counter-Reaction.- 3.2.8.12 Alternative Models.- 3.2.9 More Factors and Asymmetries.- 3.2.9.1 Chemical Substances.- 3.2.9.2 Phloem Translocation.- 3.2.9.3 Transpiration.- 3.2.10 Differential Growth, and Recent Cavils About Its Control by Hormones.- 3.3 Roots.- 3.3.1 Perspective.- 3.3.2 Calcium in the Cap.- 3.3.3 Auxin.- 3.3.4 Connection Between Calcium in the Tip and Development of IAA Asymmetry.- 3.3.5 Ethylene.- 3.3.6 Protons.- 3.3.7 Secondary Asymmetries: Reaction and Counter-Reaction.- 3.3.7.1 Calcium in the Elongation Zone.- 3.3.7.2 Gibberellin and Other Hormones.- 3.3.7.3 "Adaptation".- 3.3.8 Light, Inhibitors, and the Effect of Light on Inhibitors.- 3.3.9 Summary.- 4 Concluding Remarks.- References.- Light.- 8 De-Etiolation and Plant Hormones.- 1 Introduction.- 2 Auxins.- 2.1 Light and Auxin Transport.- 2.2 Light and Auxin Metabolism.- 3 Gibberellins.- 3.1 Cereal Leaf Growth.- 3.2 Photocontrol of Stem Extension.- 4 Ethylene.- 5 Cytokinins.- 6 Abscisic Acid and Other Inhibitors.- 7 Concluding Remarks.- References.- 9 Photoperiod and Hormones.- 1 General Concepts of Photoperiodism.- 1.1 Range of Responses.- 1.2 The Role of Leaves.- 1.3 Photoperception and the Photoperiodic Mechanism.- 1.3.1 Long-Night Processes.- 1.3.2 Long-Day Processes.- 2 Vegetative Growth: Stem Elongation.- 2.1 Rosette Plants.- 2.1.1 Gibberellins.- 2.1.2 Inhibitors.- 2.2 Caulescent Plants.- 3 Dormancy Phenomena.- 3.1 Storage Organs.- 3.1.1 Cytokinins.- 3.1.2 Inhibitors.- 3.1.3 Gibberellins.- 3.1.4 Auxins.- 3.1.5 Ethylene.- 3.1.6 Steroids.- 3.1.7 Conclusions.- 3.2 Resting Buds.- 3.2.1 Growth Inhibitors.- 3.2.2 Gibberellins.- 3.2.3 Cytokinins.- 4 Reproductive Behavior.- 4.1 Initiation of Floral Primordia.- 4.1.1 Florigen.- 4.1.2 Flower-Inhibiting Substances.- 4.1.3 Gibberellins.- 4.1.4 Abscisic Acid and Xanthoxin.- 4.1.5 Cytokinins.- 4.1.6 Auxin and Ethylene.- 4.1.7 Steroids.- 4.1.8 Conclusions.- References.- 10 Roles of Hormones in Phototropism.- 1 Introduction.- 2 Phototropic Phenomena.- 2.1 Overview: Dark-Grown Seedlings.- 2.2 Overview: Green Shoots.- 2.3 A Relatively Thorough Dose-Response Study.- 2.3.1 General Aspects.- 2.3.2 Regions of the Dose-Response Domain.- 2.3.3 A Unified View.- 2.3.4 Some Unexplained Problems.- 3 Hormonal Basis of Phototropism.- 3.1 Auxin.- 3.1.1 Dark-Grown Seedlings.- 3.1.2 Light-Grown Dicots.- 3.1.2.1 Auxin in the Stem.- 3.1.2.2 Auxin from Leaves.- 3.1.3 Mechanism of Auxin Transport.- 3.1.3.1 Basipetal Transport.- 3.1.3.2 Two Proposals for the Origin of Lateral Asymmetry.- 3.1.3.3 Experiments on Net Basipetal Transport.- 3.2 Gibberellins.- 3.3 Calcium and Other Agents and Effects.- 3.4 Conclusion.- References.- Temperature.- 11 Plant Growth Regulators and Low Temperature Stress.- 1.Introduction.- 2.Freezing Stress - Background Information.- 3.Dormancy and Cold Acclimation.- 4.Interrelations of Hormones with Freezing Stress.- 4.1 Translocatable Factors in Cold Acclimation.- 4.2 Evidence that Translocatable Factors Are Hormones.- 4.3 Effects of Hormones on Cold Acclimation.- 4.4 Exogenous Application of Synthetic Growth Regulators that Affect Cold Hardiness.- 5 The Relationship Between Chilling and Growth Regulators.- 6 The Relationship Between Deacclimation and Growth Regulators.- 7 Summary.- References.- Wind and Other Mechanical Factors.- 12 Wind and Other Mechanical Effects in the Development and Behavior of Plants, with Special Emphasis on the Role of Hormones.- 1 Introduction.- 2 Thigmonasty.- 2.1 The Thigmonastic Leaves of the Sensitive Mimosa and the Venus' Fly Trap.- 2.1.1 Sensitive Mimosa.- 2.1.2 Venus'Fly Trap.- 2.2 Thigmonastic Flower Parts.- 2.3 Aquatic Thigmonastic Plants.- 2.3.1 Aldrovanda.- 2.3.2 Nematode Trapping Fungi.- 2.4 Plant Tendrils.- 2.5 Sundew.- 3 Thigmotropism.- 3.1 Thigmotropic Roots and Shoots.- 3.2 Thigmotropic Stamens.- 3.3 Thigmotropism in Fungi.- 4 Thigmomorphogenesis.- 4.1 Thigmomorphogenesis in Fungi.- 4.2 Thigmomorphogenesis in Vascular Plants.- 4.2.1 The Ecological Significance of Thigmomorphogenesis.- 4.2.2 The Time Course of Thigmomorphogenesis.- 4.2.2.1 Histological Studies.- 4.2.3 Integrative Mechanisms in Thigmomorphogenesis.- 4.2.3.1 Action Potentials.- 4.2.3.2 The Role of Ethylene.- 4.2.3.3 The Role of Auxin.- 4.2.3.4 The Role of Translocation and Transpiration.- 4.2.4 Photosynthesis, Respiration, and Metabolism.- 4.2.5 Interaction of Mechanical Stimulation with Other Environmental Cues.- 5 Conclusions.- References.- 13 Hormonal Control of Wound-Induced Responses.- 1 Introduction.- 2 Formation of Protective Materials.- 2.1 Suberization or Cutin Formation at the Wound Surface.- 2.2 Lignification.- 3 Wound-Induced Cell Division and Its Hormonal Control.- 4 Organized Wound Response.- 4.1 Vascular Element Differentiation.- 4.2 Root Formation on Stem Cuttings.- 5 Biochemical Activation of Wound-Affected Cells.- 5.1 Factors Affecting Wound-Induced Metabolic Changes.- 5.2 Wound-Induced Change in Hormone Levels.- 6 Conclusion.- References.- 14 Water Relations and Plant Hormones.- 1 Introduction.- 2 Insufficient Water.- 2.1 Causes of Drought.- 2.2 Some Problems in Interpreting the Literature.- 2.3 Control Points for Water Loss and Gain.- 2.4 Sequence of Responses to Water Stress.- 2.4.1 The Initial Response.- 2.4.2 Later Responses.- 2.5 Drought Induced Changes in Levels of Hormone: Effects on Stomatal Functioning.- 2.5.1 Gibberellins and Stomates.- 2.5.2 Auxins and Stomates.- 2.5.3 Ethylene and Stomates.- 2.5.4 Cytokinins and Stomates.- 2.5.5 ABA and Stomatal Closure.- 2.5.6 ABA and Stomatal Opening.- 2.5.7 Summary of Section 2.5.- 2.6 Water Uptake and Movement Through Roots.- 2.6.1 Drought and Hormone Levels in Roots.- 2.6.2 Effects of Hormones and Nutrient Redistribution and ? of Roots.- 2.6.3 Effects of Hormones and Ion Transport.- 2.7 Other Mechanisms Controlling Water Status of the Plant.- 2.7.1 Reduced Growth Rate.- 2.7.2 Root Growth and Development.- 2.7.3 Leaf Morphology and Behavior.- 2.7.4 Flowering and Reproductive Development.- 2.7.5 Summary of Sections 2.7.1 to 2.7.4.- 2.7.6 Water Stress and CO2 Assimilation.- 2.7.7 Osmoregulation.- 3 Excess Water.- 3.1 Morphological Effect of Flooding.- 3.2 Causes of Flood-Induced Morphological Changes.- 3.3 Cytokinins.- 3.4 AbscisicAcid.- 3.5 Gibberellins.- 3.6 Auxins.- 3.7 Ethylene and Its Interaction with Auxins.- 3.8 Hormones and Photosynthate Transport and Partitioning.- 3.9 Summary of Section 3.- References.- Organisms.- 15 Pollen. Symbionts and Symbiont-Induced Structures.- 1 Pollen.- 1.1 Effect of Hormones on Pollen Germination and Tube Growth.- 1.2 Hormonal Composition of Pollen.- 1.3 Pollen, Hormones, and Fruit Set.- 2 Symbionts and Symbiont-Induced Structures.- 2.1 Nitrogen-Fixing Associations.- 2.1.1 Auxins.- 2.1.2 Gibberellins.- 2.1.3 Cytokinins.- 2.1.4 Interaction of Growth Substances in Nodule Development.- 2.2 Mycorrhizae.- References.- 16 Pathogenic and Non-pathogenic Microorganisms and Insects.- 1 Hormones and Microorganisms.- 1.1 Ethylene.- 1.1.1 Fungal Production of Ethylene.- 1.1.2 Bacterial Production of Ethylene.- 1.1.3 Biosynthesis of Ethylene.- 1.1.4 Ethylene and Plant Pathogenesis.- 1.2 Auxins.- 1.2.1 Fungal Production of Auxins.- 1.2.2 Effects of Auxins of Fungal Growth.- 1.2.3 Bacterial Production of Auxins.- 1.3 Cytokinins.- 1.3.1 Bacterial Production of Cytokinins.- 1.3.2 Fungal Production of Cytokinins.- 1.4 Gibberellins.- 1.4.1 Fungal Production of GA's.- 1.4.2 Bacterial Production of GA's.- 1.5 Phytotoxins Produced by Microorganisms with Growth Hormone Properties.- 2 Insects and Nematodes.- References.- 17 Electrical and Magnetic Stimul.- 1 Introduction.- 2 Electrical Stimuli.- 2.1 Historical Background.- 2.2 Measurement Techniques.- 2.2.1 Biopotential Differences.- 2.2.2 Resistance.- 2.2.3 Current.- 2.2.4 Capacitance.- 2.2.5 Dielectric Constant.- 2.3 Seed or Tissue Viability.- 2.4 Photoelectric Responses.- 2.5 Geoelectric Responses.- 2.6 Hormone Transport.- 2.7 Growth-Regulating Compounds in Relation to the Membrane or Cell Walls.- 2.8 Alterations of Growth by Applied Electric Fields.- 2.9 Electrogenesis, Membranes, ATPases and Contractile Proteins.- 2.10 Hypothesis of Hormone-Electric Interaction.- 3 Magnetic Stimuli and Hormones.- 4 Conclusion.- References.- 18 Regulators of Plant Reproduction, Growth and Differentiation in the Environment.- 1 Introduction.- 2 Factors Regulating Sexual Differentiation.- 2.1 Algae.- 2.1.1 Sexual Induction.- 2.2 Fungi.- 2.2.1 Myxomycetes.- 2.2.1.1 Macrocyst Formation.- 2.2.2 Phycomycetes.- 2.2.2.1 Antheridial and Oogonial Formation.- 2.2.2.2 Induction of Progametangia.- 2.2.3 Ascomycetes.- 2.2.3.1 Ascogonial Induction.- 2.2.3.2 Factors Affecting Sexual Fusion.- 2.2.4 Basidiomycetes.- 2.2.4.1 Induction of Conjugation Tubes.- 2.3 Ferns.- 2.3.1 Antheridia Formation.- 3 Sex Attractants.- 3.1 Algae.- 3.1.1 Chlorophyta.- 3.1.2 Phaeophyta.- 3.2 Fungi.- 3.3 Ferns.- 4 Factors Regulating Vegetative Development.- 4.1 Algae.- 4.1.1 Spore Differentiation.- 4.1.2 Thallus Stability.- 4.1.3 Rhizoid Initiation.- 4.1.4 Filament Repair.- 4.2 Fungi.- 4.2.1 Aggregation of Amoebae.- 4.2.2 Morphological Transformation.- 5 Chemotactic Agents.- 5.1 Attraction of Nitrogen-Fixing Bacteria.- 5.2 Attraction of Plasmodia.- 5.3 Attraction of Zygotes, Mitospores, and Meiospores.- 6 Factors Regulating Fungal Morphogenesis.- 6.1 Induction of Infection Structures.- 6.2 Nematode Trap Formation.- 7 Factors Regulating the Growth of Higher Plants.- 7.1 Bacteria.- 7.1.1 Inhabitants of Soil.- 7.1.2 Epiphytes on L
by "Nielsen BookData"