Computer architectures for spatially distributed data
Author(s)
Bibliographic Information
Computer architectures for spatially distributed data
(NATO ASI series, ser. F . Computer and systems sciences ; v. 18)
Springer-Verlag, c1985
- : Germany
- : U.S.
Available at 25 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographies
"Proceedings of the NATO Advanced Study Institute on Computer Architectures for Spatially Distributed Data held at Cetraro, Cosenza, Italy, 6-17 June 1983"--T.p. verso
"Published in cooperation with NATO Scientific Affairs Division."
Description and Table of Contents
Description
These are the proceedings of a NATO Advanced Study Institute (ASI) held in Cetraro, Italy during 6-17 June 1983. The title of the ASI was Computer Arehiteetures for SpatiaZZy vistributed Vata, and it brouqht together some 60 participants from Europe and America. Presented ere are 21 of the lectures that were delivered. The articles cover a wide spectrum of topics related to computer architecture s specially oriented toward the fast processing of spatial data, and represent an excellent review of the state-of-the-art of this topic. For more than 20 years now researchers in pattern recognition, image processing, meteorology, remote sensing, and computer engineering have been looking toward new forms of computer architectures to speed the processing of data from two- and three-dimensional processes. The work can be said to have commenced with the landmark article by Steve Unger in 1958, and it received a strong forward push with the development of the ILIAC III and IV computers at the University of Illinois during the 1960's. One clear obstacle faced by the computer designers in those days was the limitation of the state-of-the-art of hardware, when the only switching devices available to them were discrete transistors. As aresult parallel processing was generally considered to be imprae tieal, and relatively little progress was made."
by "Nielsen BookData"