Finite element methods in mechanics
Author(s)
Bibliographic Information
Finite element methods in mechanics
Cambridge University Press, 1986
- : pbk
Available at 30 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 402-406
Includes index
Description and Table of Contents
Description
This is a textbook written for mechanical engineering students at first-year graduate level. As such, it emphasizes the development of finite element methods used in applied mechanics. The book starts with fundamental formulations of heat conduction and linear elasticity and derives the weak form (i.e. the principle of virtual work in elasticity) from a boundary value problem that represents the mechanical behaviour of solids and fluids. Finite element approximations are then derived from this weak form. The book contains many useful exercises and the author appropriately provides the student with computer programs in both BASIC and FORTRAN for solving them. Furthermore, a workbook is available with additional computer listings, and also an accompanying disc that contains the BASIC programs for use on IBM-PC microcomputers and their compatibles. Thus the usefulness and versatility of this text is enhanced by the student's ability to practise problem solving on accessible microcomputers.
Table of Contents
- Preface
- 1. Review of background materials
- 2. Finite element analysis of heat conduction problems
- 3. Generalisation of the finite element methods for heat conduction problems
- 4. Simple elastic structures and their free vibration problems
- 5. Finite element approximations for problems in linear elasticity
- 6. Plate-bending problems
- Appendixes
- Bibliography
- List of notation
- Index.
by "Nielsen BookData"