Residues and traces of differential forms via Hochschild homology

書誌事項

Residues and traces of differential forms via Hochschild homology

Joseph Lipman

(Contemporary mathematics, v. 61)

American Mathematical Society, c1987

大学図書館所蔵 件 / 46

この図書・雑誌をさがす

注記

Bibliography: p. 95

内容説明・目次

内容説明

Requiring only some understanding of homological algebra and commutative ring theory, this book will give those who have encountered Grothendieck residues in geometry or complex analysis a better understanding of residues, as well as an appreciation of Hochschild homology. While numerous papers have treated the topics of residues from a variety of viewpoints, no books have addressed this topic. The author fills this gap by using Hochschild homology to provide a natural, general, and easily accessible approach to residues, and by identifying connections with other treatments of residues. Developing a theory of the Grothendieck symbol by means of elementary homological and commutative algebra, the author derives residues from a simple pairing between Hochschild homology and cohomology groups, and defines all concepts along the way. The author also establishes some functorial properties and introduces certain trace and cotrace maps with potential use in other contexts.

目次

The residue homomorphism Functorial properties Quasi-regular sequences Appendix A: Residues on algebraic varieties Appendix B: Exterior differentiation Trace and cotrace.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ