Harish-Chandra homomorphisms for p-adic groups
著者
書誌事項
Harish-Chandra homomorphisms for p-adic groups
(Regional conference series in mathematics, no. 59)
Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, c1985
大学図書館所蔵 全35件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
On t.p. the German (Fraktur) lower case "p" is used in "p-adic" in the title
"Supported by the National Science Foundation."
"Expository lectures from the CBMS regional conference held at the University of Chicago, August 8-12, 1983"--T.p. verso
Bibliography: p. 75-76
内容説明・目次
内容説明
This book introduces a systematic new approach to the construction and analysis of semi simple $p$-adic groups. The basic construction presented here provides an analogue in certain cases of the Harish-Chandra homomorphism, which has played an essential role in the theory of semi simple Lie groups. The book begins with an overview of the representation theory of GL$_n$ over finite groups.The author then explicitly establishes isomorphisms between certain convolution algebras of functions on two different groups. Because of the form of the isomorphisms, basic properties of representations are preserved, thus giving a concrete example to the correspondences predicted by the general philosphy of Langlands. The first chapter, suitable as an introduction for graduate students, requires only a basic knowledge of representation theory of finite groups and some familiarity with the general linear group and the symmetric group. The later chapters introduce researchers in the field to a new method for the explicit construction and analysis of representations of $p$-adic groups, a powerful method clearly capable of extensive further development.
目次
A Hecke algebra approach to the representations of GL$_n(F_q)$ Hecke algebras for GL$_n$ over local fields: introduction Harish-Chandra homomorphism in the unramified anisotropic case.
「Nielsen BookData」 より