書誌事項

Biophysics

edited by Walter Hoppe ... [et al.] ; contributors, R.D. Bauer ... [et al.]

Springer-Verlag, 1983

  • : U.S.
  • : Germany

タイトル別名

Biophysik

大学図書館所蔵 件 / 36

この図書・雑誌をさがす

注記

Translation of the 2nd German edition

Includes bibliographies and index

内容説明・目次

内容説明

What is biophysics? As with all subjects which straddle traditional boundaries between fields, it eludes a precise definition. Furthermore, it is impossible to do biophysics without having a certain foundation of knowledge in biology, physics, physical chemistry, chemistry and biochemistry. One approach to a biophysics textbook would be to refer the student to the literature of these neighboring fields, and to leave the selection of the appropriate supplementary material up to the student. The editors of this volume are of the opinion that it is more useful and less time-consuming to present a selection of the supplementary knowledge, in concentrated form, together with the subject matter specific to biophysics. The reader will thus find in this book introductions to such subjects as the structure and function of the cell, the chemical structure of biogenic macromolecules, and even theoretical chemistry. What, indeed, is biophysics? Must we consider it to include physiology, electromedicine, radiation medicine, etc. ? The field has evolved continuously in recent years. Molecular understanding oflife processes has come more and more to the fore. Just as the field of molecular physics has developed to describe structures and processes in the realm of non-living systems, there has been a corresponding development of molecular biophysics.

目次

  • 1 The Structure of Cells (Prokaryotes, Eukaryotes).- 1.1 Characteristics of Cells.- 1.1.1 Molecule - Organelle - Cell - Organism.- 1.1.2 The Cell: Basic Unit of Life.- 1.1.3 The Size of the Cell.- 1.1.4 Protocyte and Eucyte.- 1.2 Cell Organelles.- 1.2.1 Plasmalemma.- 1.2.2 Nucleus.- 1.2.3 Ground Cytoplasm.- 1.2.4 Organelles of One Compartment.- 1.2.5 Compound Organelles.- 1.2.6 Cell Envelopes and Cell Connections.- 1.3 Nuclear and Cell Division.- 1.3.1 Mitosis.- 1.3.2 Meiosis.- 1.3.3 Cell Division.- 1.4 Evolution of the Eucyte.- 1.5 Viruses and Bacteriophages.- 2 The Chemical Structure of Biologically Important Macromolecules.- 2.1 Introduction.- 2.2 Nucleic Acids and Their Structure.- 2.2.1 Nucleotides as Building Blocks.- 2.2.2 The Covalent Polynucleotide Structure.- 2.2.3 The Principle of Base Pairing.- 2.2.4 The Double Helical Structure of DNA.- 2.2.5 Properties of DNA.- 2.3 Proteins and Their Structure.- 2.3.1 Amino Acids as Building Units.- 2.3.2 Peptide Bond Formation.- 2.3.3 Properties of Amino Acids.- 2.3.4 The Covalent Structure of Proteins.- 2.3.5 Stabilisation of the Structural Elements by Hydrogen Bonds (Secondary Structure).- 2.3.6 The Spatial Structure.- 3 Structure Determination of Biomolecules by Physical Methods.- 3.1 Size and Shape.- 3.1.1 Introduction.- 3.1.2 Experimental Methods.- 3.2 Internal Structure.- 3.2.1 Structure Analysis with X Rays.- 3.2.2 Diffuse Small-angle Scattering of Macromolecules in Solution.- 3.2.3 Structure Analysis with Electron Rays (Electron Microscopy).- 3.2.4 Light Scattering by Macromolecules.- 3.2.5 Applications of Spectrophotometry in the Ultraviolet and Visible Spectral Regions.- 3.2.6 Applications of Photoacoustic Spectroscopy in Biophysics.- 3.2.7 Action Spectroscopy.- 3.2.8 ORD and CD Spectroscopy.- 3.2.9 Applications of the Mossbauer Effect to Problems in Biophysics.- 3.2.10 Methods for Measuring Fast Reactions.- 3.3 Electron-spin Resonance Spectroscopy.- 3.3.1 Introduction.- 3.3.2 The Spin Hamiltonian.- 3.3.3 ESR Spectra of Organic Radicals in Solution - Isotropic Hyperfine Splitting.- 3.3.4 ESR Spectra of Organic Radicals in Solids - Anisotropic Hyperfine Splitting.- 3.3.5 ESR Spectra of Inorganic Radicals - g-value Anisotropy.- 3.3.6 ESR of Organic Molecules in Triplet States - Electron Spin-Spin Interactions.- 3.3.7 Relaxation Processes and Line Shapes.- 3.3.8 The ESR Spectrometer.- 3.3.9 Multiple Resonance Techniques.- 3.3.10 Applications of ESR to Biological Systems.- 3.4 Nuclear Magnetic Resonance Spectroscopy.- 3.4.1 Introduction.- 3.4.2 Basic Theory.- 3.4.3 Experimental Techniques.- 3.4.4 Biophysical Applications of NMR Spectroscopy.- 4 Intra- and Intermolecular Interactions.- 4.1 Introduction.- 4.2 Primary Structure.- 4.2.1 Particles.- 4.2.2 Atoms.- 4.2.3 Bonds.- 4.3 Interactions Between Structural Units.- 4.3.1 The Repulsion of Electron Pairs.- 4.3.2 Electrostatic Forces.- 4.3.3 Dispersion Forces.- 4.3.4 Hydrogen Bonds.- 4.4 Charge-transfer Reaction in Biomolecules.- 4.5 Conformational Transitions in Biopolymers.- 4.5.1 Introduction.- 4.5.2 Theoretical Treatment.- 4.5.3 Experimental Examples.- 4.6 Polar Interactions, Hydration, Proton Conduction and Conformation of Biological Systems - Infrared Results.- 4.6.1 Fundamentals.- 4.6.2 Interactions and Conformation with Polynucleotides.- 4.6.3 Hydrogen Bonds between Side Chains and Proton Conduction, Hydration and Conformation of Proteins.- 4.6.4 Experimental Techniques.- 4.7 Debye-Huckel Theory (Forces between Molecules in Solution).- 4.7.1 Debye-Huckel Theory.- 4.7.2 Quantum-mechanical Discussion.- 4.8 Polyelectrolytes and Their Interaction.- 4.8.1 Introduction.- 4.8.2 Polyelectrolytes in Salt Solutions.- 4.8.3 Polyelectrolytes on Boundary Surfaces.- 4.8.4 Polyelectrolytes in Complexes.- 4.8.5 Prospects.- 5 Mechanisms of Energy Transfer.- 5.1 Photophysics and Photochemistry. General Principles.- 5.1.1 Stationary States of Molecules.- 5.1.2 Basic Theoretical Concepts.- 5.1.3 Important Photophysical Processes.- 5.1.4 The Mechanisms of Some Selected Photophysical Processes.- 5.1.5 Some Applications of Absorption and Fluorescence Spectroscopy.- 5.1.6 Change in Basicity and Acidity upon Optical Excitation.- 5.1.7 Fluorescence Quenching.- 5.1.8 Energy Transfer.- 5.1.9 Delayed Fluorescence.- 5.1.10 Primary Photochemical Reactions.- 5.2 Energy Transfer Mechanisms.- 5.2.1 Classical Approach.- 5.2.2 Emitter Molecule Near an Absorbing Layer.- 5.2.3 Energy Transfer in Systems of Monomolecular Layers.- 5.2.4 Reaction of Receiver Molecule 2 on Emitter Molecule 1.- 5.2.5 Emitter Molecule in the Echo of a Metal Mirror.- 5.2.6 Energy Transfer in Cooperative Systems of Dye Molecules.- 6 Radiation Biophysics. Ernst-Georg Niemann.- 6.1 Introduction.- 6.2 Radiation and Its Measurement.- 6.2.1 Types of Radiation.- 6.2.2 Interaction Between Radiation and Matter.- 6.2.3 Dose and Dose Rate.- 6.2.4 Dosimetry.- 6.3 Description and Interpretation of Radiation Action.- 6.3.1 Dose-effect Graphs and Target Theory.- 6.3.2 Direct and Indirect Radiation Action.- 6.3.3 Energy-transfer Processes. Reaction Rates, Pulse Radiolysis and Flash Photolysis.- 6.4 Molecular Effects of Radiation.- 6.4.1 Radiation Chemistry of Water.- 6.4.2 Radicals and Molecular Products.- 6.4.3 Modification of Radiation Effects.- 6.5 Radiation Effects on Biomolecules and Molecular Structures.- 6.5.1 Radiation Effects on Proteins.- 6.5.2 Radiation Effects on Nucleic Acids.- 6.5.3 Radiation Effects on Membrane Structures.- 6.6 Radiation Effects on Cells and Organisms.- 6.6.1 Radiation Effect on the Cell.- 6.6.2 Genetic Radiation Effects.- 6.6.3 Radiation Stimulation.- 6.7 Radiation Hazards and Radiation Protection.- 6.7.1 Natural and Man-made Radiation Burden.- 6.7.2 Radiation Protection.- 7 Isotope Methods Applied in Biology.- 7.1 Introduction.- 7.2 Stable and Radioactive Isotopes.- 7.2.1 Comparative Study.- 7.2.2 Stable Isotopes and the Principles of Isotope Measuring.- 7.2.3 Radioactive Isotopes.- 7.2.4 The Most Important Measuring Methods for Radioactive Isotopes.- 7.3 Isotope Effects.- 7.3.1 Main Causes of Isotope Effects.- 7.3.2 Kinetic Isotope Effects and Their Determination.- 7.4 Analytic Isotope Application.- 7.4.1 Activation Analysis.- 7.4.2 Isotope Dilution Analysis.- 7.4.3 Radioimmunologic Analysis.- 7.5 Some Examples for the Application of Isotopes.- 7.5.1 Studies of Distribution.- 7.5.2 Metabolism and Transport.- 7.5.3 The Steric Process of Enzyme Reactions on Prochiral Systems.- 7.5.4 Studies of Isotope Exchange.- 8 Energetic and Statistical Relations.- 8.1 General.- 8.2 Basic Concepts of Thermodynamics.- 8.2.1 First Law of Thermodynamics, Enthalpy.- 8.2.2 Second Law of Thermodynamics, Entropy, Equilibrium, Free Enthalpy and Maximum Useful Work.- 8.2.3 Standard Values.- 8.2.4 Standard Free-energy Change and the Equilibrium Constant.- 8.2.5 Chemical Potential, Activity, Standard State.- 8.2.6 Phase Equilibrium, Phase Rule.- 8.3 Energy Flux, ATP, Transfer Potentials and Coupled Reactions.- 8.4 Statistical Interpretation of Thermodynamic Quantities.- 8.4.1 Energy Eigenvalues, Maxwell-Boltzmann Distribution, Partition Function.- 8.4.2 Partition Function and Thermodynamic Quantities
  • Third Law of Thermodynamics.- 8.4.3 Statistical Description of Chemical Equilibrium.- 8.4.4 Limitations of Equilibrium Thermodynamics.- 8.5 Theory of Absolute Reaction Rates.- 8.5.1 Definition of Kinetic Parameters.- 8.5.2 Transition State Theory.- 8.6 Irreversible Thermodynamics - An Overview.- 8.6.1 Introduction.- 8.6.2 Equilibrium - the State of Perfect Dynamical Compensation.- 8.6.3 The Four Laws of Equilibrium Thermodynamics.- 8.6.4 Reversible and Irreversible Processes.- 8.6.5 Flows, Forces, and Entropy Production.- 8.6.6 Linear Irreversible Thermodynamics.- 8.6.7 Far off from Equilibrium - Bifurcations, Multiple Steady States and Spatial Order.- 8.6.8 Oscillations, Chemical Waves and Molecular Chaos.- 8.6.9 Concluding Remarks.- 8.7 Biological Energy Conservation.- 8.7.1 Introduction.- 8.7.2 The General Principles of Functional and Structural Organization of Bioenergetic Fundamental Reactions.- 8.7.3 Properties of ATP and its Central Role in Bioenergetics.- 8.7.4 Mechanisms and Energetics of the Reaction of Metabolically Bound Hydrogen with O2.- 8.7.5 Biological Energy Transformation Processes.- 9 Enzymes as Biological Catalysts.- 9.1 Introduction.- 9.2 How do Enzymes work?.- 9.3 How Are Enzymes Regulated?.- 9.4 Protein Structure (Globular Proteins).- 9.4.1 How Do Proteins Fold?.- 9.4.2 Building Blocks.- 9.4.3 Secondary Structure: the Framework.- 9.4.4 Three-dimensional Structure.- 9.5 Examples.- 9.5.1 Proteases.- 9.5.2 Immunoglobulins.- 9.6 Structural Organization of Proteins.- 9.6.1 Chains, Links and Stability.- 9.6.2 Organizational Scheme.- 9.6.3 Hierarchy.- 9.6.4 Symmetry.- 9.6.5 Evolution.- 10 The Biological Function of Nucleic Acids.- 10.1 Introduction.- 10.1.1 General Remarks.- 10.1.2 Occurrence and Structure of Nucleic Acids.- 10.2 DNA Replication.- 10.2.1 Organization of DNA in the Cell.- 10.2.2 Principles of DNA Replication.- 10.2.3 Models for Replication.- 10.2.4 The Replication Apparatus.- 10.2.5 Reverse Transcriptase.- 10.3 Gene Expression.- 10.3.1 Transcription.- 10.3.2 Modification of Nucleic Acid.- 10.3.3 Translation.- 10.4 Regulation of Gene Expression.- 10.4.1 Control Processes on the Level of Transcription.- 10.4.2 Other Control Mechanism of the Gene Expression.- 11 Thermodynamics and Kinetics of Self-assembly.- 11.1 General Features.- 11.2 Linear Association.- 11.3 Equilibrium.- 11.4 Kinetics.- 11.5 Size Distribution and Length Determination.- 11.6 Other Effects.- 12 Membranes.- 12.1 Biomembrane Models.- 12.1.1 Introduction: Existence and Composition of Biomembranes.- 12.1.2 Bilayer Model of Lipid Arrangement in Biomembranes.- 12.1.3 Models of Protein Arrangement in Biomembranes.- 12.1.4 Carbohydrate Arrangement in Biomembranes.- 12.1.5 Summary and Conclusions.- 12.2 Physical Foundations of the Molecular Organization and Dynamics of Membranes.- 12.2.1 Introduction.- 12.2.2 Polymorphism of Lipid/Water Systems.- 12.2.3 Molecular Order in Lipid Layers.- 12.2.4 Molecular Dynamics and Transport Properties.- 12.2.5 Elastic Properties of Lipid Bilayers and Membranes.- 12.2.6 Charge-induced Changes in the Microstructure of Membranes.- 12.2.7 Structure and Properties of Two-dimensional Lipid Mixtures.- 12.2.8 Macromolecules (Proteins) in Lipid Bilayers.- 12.2.9 Applications of Spin Labeling in Membrane Research.- 12.2.10 Examples of Applications.- 12.3 Membrane Potentials.- 12.3.1 Measurement of Membrane Potentials.- 12.3.2 Origins of Membrane Potential.- 12.3.3 Donnan Potential.- 12.3.4 Diffusion Potentials at Membranes.- 12.3.5 Contributions of Electrogenic Ion Pumps to the Membrane Potential.- 12.4 Control of Differentiation and Growth by Endogenous Electric Currents.- 12.4.1 Introduction: The Problem of "Spatial Development".- 12.4.2 The Cell Membrane as the Site of Perception and Transduction of Information.- 12.4.3 Electric Currents During Differentiation and Growth of Cells and Tissues.- 12.4.4 A New Method to Measure Transcellular Ionic Currents.- 12.4.4 The Controlling Function of the Natural Ionic Currents.- 12.5 Transport of Matter Through Biological Membranes.- 12.5.1 Composition and Structure of the Cell Membrane.- 12.5.2 Phenomenological Theory of Membrane Transport.- 12.5.3 Transport by Diffusion.- 12.5.4 Transport by Flux Coupling Between Different Substances.- 12.5.5 Active Transport.- 12.5.6 Transport by Vesicle Formation.- 12.6 Biophysics of Respiratory Gas Transport.- 12.6.1 Processes Involved in Respiratory Gas Transport.- 12.6.2 Physical Principles.- 12.6.3 The Transport of Respiratory Gases in Blood.- 12.6.4 Gas Exchange in the Lungs.- 12.6.5 Gas Exchange in Tissue.- 13 Photobiophysics.- 13.1 Photosynthesis.- 13.1.1 Introduction.- 13.1.2 Energy Migration Processes.- 13.1.3 Photochemical Processes at the Reaction Centers.- 13.1.4 Electron Transfer Processes.- 13.1.5 Generation of Electrochemical Potentials via Vectorial Charge Transport.- 13.1.6 Phosphorylation.- 13.1.7 Remarks About the Structure of the Thylakoid Membrane.- 13.1.8 Summarizing Remarks.- 13.2 Photomorphogenesis.- 13.2.1 Introduction.- 13.2.2 Characterization of Phytochrome in Vivo.- 13.2.3 Intracellular Localization of Phytochrome.- 13.2.4 Characterization of Phytochrome in Vitro.- 13.2.5 Kinetic Aspects of the Regulation by Phytochrome.- 13.2.6 Phytochrome Control in Nature.- 13.2.7 Concluding Remarks.- 13.3 Bioluminescence.- 13.3.1 Introduction.- 13.3.2 Firefly Luminescence.- 13.3.3 Mechanism of the Oxidative Reaction.- 13.3.4 Kinetics of Light Production.- 13.3.5 Bacterial Luminescence.- 13.3.6 Marine Luminescence.- 14 Biomechanics.- 14.1 The Molecular Physiology of Contractivity and Motility.- 14.1.1 Introduction.- 14.1.2 Muscle Physiology.- 14.1.3 Muscle Mechanics and Energetics.- 14.1.4 Structure of Cross-striated Muscle.- 14.1.5 The Mechanism of Shortening.- 14.1.6 The Proteins of the Contractile Apparatus and Their Enzymatic Properties.- 14.1.7 The Structure of the Myofilament.- 14.1.8 The Arrangements of the Filaments in the Overlap Zone.- 14.1.9 The Regulation of Muscle Activity.- 14.1.10 The Enzymatic Activity of Myosin and the Mechanism of ATP Hydrolysis.- 14.1.11 An Attempt to Correlate the Cross-bridge Cycle with ATP Hydrolysis.- 14.1.12 The Kinetics of Cross-bridge Mechanics.- 14.1.13 Variability of the Actomyosin System.- 14.1.14 The Tubulin-Dynein System.- 14.1.15 Structure and Biochemistry of Cilia and Flagella.- 14.1.16 The Mechanism of Cilia and Flagella Movement.- 14.1.17 Cytoplasmic Tubulin.- 14.1.18 Bacteria Flagella.- 14.2 The Biophysics of Locomotion on Land.- 14.2.1 The Biomechanics of Jumping.- 14.2.2 The Biomechanics of Standing and Walking.- 14.3 The Biophysics of Locomotion in Water.- 14.3.1 Basic Hydrodynamic Parameters.- 14.3.2 Hydrodynamic Adaptation of the Bodies of Swimming Animals.- 14.3.3 Propulsion in Swimming Animals.- 14.4 Th Biophysics of Locomotion in Air.- 14.4.1 Definition.- 14.4.2 Extent and Inherent Difficulty of the Subject.- 14.4.3 The Kinematics of Flapping Wings.- 14.4.4 Aerodynamics.- 14.4.5 Energetics.- 14.5 Biostatics.- 14.5.1 Definition.- 14.5.2 Dimensional Considerations
  • Biochemical Consequences of Absolute Size.- 14.5.3 Static Systems of Great Slenderness.- 14.5.4 Forces and Moments.- 14.5.5 Stress of Bending and Breaking Strength.- 14.5.6 Structures of Uniform Strength.- 14.6 Biomechanics of the Cardiovascular System.- 14.6.1 Introductory Remarks.- 14.6.2 The Heart as a Pump.- 14.6.3 The Arterial System.- 14.6.4 Microcirculation.- 14.6.5 The Venous System.- 14.6.6 Adjustment and Regulation of the Circulatory System.- 14.7 Water and Solute Movement in Plants.- 14.7.1 Introduction.- 14.7.2 Xylem Transport.- 14.7.3 Phloem Transport.- 15 Neurobiophysics.- 15.1 Excitation, its Conduction and Synaptic Transmission.- 15.1.1 Introduction.- 15.1.2 Excitation.- 15.1.3 Electrotonic Potential Spread and Conduction of Action Potentials.- 15.1.4 Chemical Synaptic Transmission.- 15.1.5 Electrical Synaptic Transmission.- 15.2 Biophysics of Sensory Mechanisms.- 15.2.1 Fundamentals of Transduction Mechanisms in Sensory Cells.- 15.2.2 Biophysics of Mechanoreception.- 15.2.3 Molecular Recognition: Biophysics of Chemoreception.- 15.2.4 The Biophysics of Photoreception.- 15.2.5 Biophysics of Electroreception.- 15.2.6 Geobiophysics: The Effect of Ambient Pressure, Gravity and of the Geomagnetic Field on Organisms.- 16 Cybernetics.- 16.1 Information Theory and Communication Theory.- 16.1.1 Introduction.- 16.1.2 The Unidirectional Information Channel.- 16.1.3 The Bidirectional Communication.- 16.2 Introduction into Cybernetics of Orientation Behavior.- 16.2.1 The Object and the Objective.- 16.2.2 Open Loop and Closed Loop.- 16.2.3 Sinusoidal Input Functions and Their Consequences.- 16.2.4 Formation of Orthogonal Components.- 16.2.5 Capabilities and Limitations.- 16.2.6 Space or Spatial Frequency.- 16.3 System Theory of Perception Processes.- 16.3.1 The System.- 16.3.2 The Three-dimensional System Theory of Homogenous Layers.- 16.3.3 Visual Detection.- 16.3.4 Visual Classification.- 16.3.5 Active Perception and Information Production.- 16.3.6 Discussion.- 16.4 Systems Analytical Behavioral Research: as Illustrated with the Fly.- 16.4.1 Introduction.- 16.4.2 Properties of Linear and Nonlinear Systems.- 16.4.3 Systems Analysis of Pattern-induced Flight Orientation of Insects.- 16.4.4 Orientation Behavior Relative to a Complex Environment.- 16.4.5 Nonlinear System Theory of Pattern-induced Flight Orientation.- 16.4.6 From a Macroscopic to a Microscopic Description.- 16.4.7 Summary and Outlook.- 16.5 Aspects on Biophysics of Biological Oscillations.- 16.5.1 Introduction.- 16.5.2 Harmonic Oscillations. Van der Pol Oscillator.- 16.5.3 Perturbation of Oscillators. Phase-response Curves.- 16.5.4 Another Point of View: Feedback.- 16.5.5 Coupling Between Several Oscillators.- 17 Evolution.- 17.1 Self-organization of Matter and Early Evolution of Life.- 17.1.1 Introduction.- 17.1.2 Principal Aspects of the Model.- 17.1.3 General Model Aspects and Later Evolutionary Stages.- 17.1.4 Some Mathematical and Numerical Details.- 17.1.5 Information and Knowledge.- 17.1.6 Fundamental Aspects of Self-organization of Matter into Living Systems.- 17.1.7 Evolutionary Outside Biology.- 17.1.8 Concluding Remarks.- 17.2 From Biological Macromolecules to Protocells - The Principle of Early Evolution.- 17.2.1 Introduction.- 17.2.2 What is "Evolution"?.- 17.2.3 Irreversible Thermodynamics and Self-replication.- 17.2.4 The Molecular Mechanisms of RNA Replication.- 17.2.5 The Evolution Reactor.- 17.2.6 Molecular Selection.- 17.2.7 A Stochastic Model for Self-replication.- 17.2.8 Darwinian Evolution of Polynucleotides.- 17.2.9 Cooperation Between Self-replicating Elements.- 17.2.10 Compartments and Individuals.- 17.2.11 The Role of a Variable Environment.- 17.2.12 A Model for the Course of Early Evolution.- 17.3 Chemical Evolution and the Origin of Living Systems.- 17.3.1 Introduction.- 17.3.2 The Origin of Life.- 17.3.3 Remaining Questions.

「Nielsen BookData」 より

詳細情報

  • NII書誌ID(NCID)
    BA00537390
  • ISBN
    • 0387120831
    • 3540120831
  • LCCN
    83012468
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 原本言語コード
    ger
  • 出版地
    Berlin
  • ページ数/冊数
    xxiv, 941 p.
  • 大きさ
    28 cm
  • 分類
  • 件名
ページトップへ