Chemistry and physics of solid surfaces

Bibliographic Information

Chemistry and physics of solid surfaces

editors, R. Vanselow and R. Howe

(Springer series in surface sciences, v. 5, 10, 22)

Springer-Verlag, c1986-c1990

  • 6 : us
  • 6 : gw
  • 7 : us
  • 7 : gw
  • 8 : us
  • 8 : gw

Available at  / 69 libraries

Search this Book/Journal

Note

Vol. 6-8: Springer series in surfaces sciences

Description and Table of Contents

Volume

6 : gw ISBN 9783540162643

Description

This volume contains review articles which were written by the invited speak- ers of the seventh International Summer Institute in Surface Science (ISISS), held at the University of Wisconsin - Milwaukee in July 1985. The form of ISISS is a set of tutorial review lectures presented over a one-week period by internationally recognized experts on various aspects of surface science. Each speaker is asked, in addition, to write a review article on his lecture topic. No single volume in the series Chemistry and Physics of Solid Surfaces can possibly cover the entire field of modern surface science. However, the series as a whole is intended to provide experts and students alike with a comprehensive set of reviews and literature references, particularly empha- sizing the gas-solid interface. The collected articles from previous Summer Institutes have been published under the following titles: Surface Science: Recent Progress and Perspectives, Crit. Rev. Solid State Sci. 4, 125-559 (1974) Chemistry and Physics of Solid Surfaces, Vols. I, II, and III (CRC Press, Boca Raton, FL 1976, 1979 and 1982), Vols. IV and V, Springer Ser. Chern. Phys., Vols. 20 and 35, (Springer, Berlin, Heidelberg 1982 and 1984). The field of catalysis, which has provided the major impetus for the de- velopment of modern surface science, lost two of its pioneers during 1984 and 1985: Professors G.-M. Schwab (1899-1984) and p.k. Emmett (1900-1985).

Table of Contents

  • 1. Georg-Maria Schwab: Early Endeavours in the Science of Catalysis.- References.- 2. The Life and Times of Paul H. Emmett.- 3. Three Decades of Catalysis by Metals.- 3.1 Bifunctional Catalysis.- 3.2 Characterization of Dispersed Metals.- 3.2.1 Chemisorption Isotherms.- 3.2.2 Application of Extended X-Ray Absorption Fine Structure.- 3.2.3 Application of Nuclear Magnetic Resonance.- 3.3 Hydrocarbon Reactions on Metals.- 3.3.1 Hydrogenolysis.- 3.3.2 Hydrogenation and Dehydrogenation.- 3.3.3 Isomerization.- 3.4 Bimetallic Catalysts.- 3.4.1 Metal Alloys as Catalysts.- 3.4.2 Bimetallic Aggregates of Immiscible Components.- 3.4.3 Bimetallic Clusters.- 3.5 Summary.- References.- 4. Molecular Organometallic Chemistry and Catalysis on Metal-Oxide Surfaces.- 4.1 Synthesis.- 4.2 Structure Determination by Physical Methods.- 4.2.1 Infrared Spectroscopy.- 4.2.2 Laser Raman Spectroscopy.- 4.2.3 Inelastic Electron Tunneling Spectroscopy.- 4.2.4 Extended X-Ray Absorption Fine Structure Spectroscopy.- 4.2.5 Ultraviolet-Visible Reflectance Spectroscopy.- 4.2.6 Nuclear Magnetic Resonance (NMR).- 4.2.7 Temperature-Programmed Decomposition.- 4.2.8 High-Resolution Transmission Electron Microscopy.- 4.2.9 Other Methods and General Points.- 4.3 Reactivity.- 4.4 Catalytic Activity.- 4.5 Supported Metals with Simple Structures Derived from Supported Organometallics.- 4.6 Summary.- References.- 5. Catalysis by Molybdena-Alumina and Related Oxide Systems.- 5.1 Nature of the Catalyst.- 5.2 Nature of the Catalytic Centers.- 5.3 The Chemisorption of Hydrogen on the Catalytic Centers.- 5.4 Relationships with Catalysis.- References.- 6. Structure and Catalytic Performance of Zeolites.- 6.1 Introduction to Zeolites.- 6.2 Some Structural Considerations.- 6.3 Fundamentals of Catalysis by Zeolites: A Resume1. Georg-Maria Schwab: Early Endeavours in the Science of Catalysis.- References.- 2. The Life and Times of Paul H. Emmett.- 3. Three Decades of Catalysis by Metals.- 3.1 Bifunctional Catalysis.- 3.2 Characterization of Dispersed Metals.- 3.2.1 Chemisorption Isotherms.- 3.2.2 Application of Extended X-Ray Absorption Fine Structure.- 3.2.3 Application of Nuclear Magnetic Resonance.- 3.3 Hydrocarbon Reactions on Metals.- 3.3.1 Hydrogenolysis.- 3.3.2 Hydrogenation and Dehydrogenation.- 3.3.3 Isomerization.- 3.4 Bimetallic Catalysts.- 3.4.1 Metal Alloys as Catalysts.- 3.4.2 Bimetallic Aggregates of Immiscible Components.- 3.4.3 Bimetallic Clusters.- 3.5 Summary.- References.- 4. Molecular Organometallic Chemistry and Catalysis on Metal-Oxide Surfaces.- 4.1 Synthesis.- 4.2 Structure Determination by Physical Methods.- 4.2.1 Infrared Spectroscopy.- 4.2.2 Laser Raman Spectroscopy.- 4.2.3 Inelastic Electron Tunneling Spectroscopy.- 4.2.4 Extended X-Ray Absorption Fine Structure Spectroscopy.- 4.2.5 Ultraviolet-Visible Reflectance Spectroscopy.- 4.2.6 Nuclear Magnetic Resonance (NMR).- 4.2.7 Temperature-Programmed Decomposition.- 4.2.8 High-Resolution Transmission Electron Microscopy.- 4.2.9 Other Methods and General Points.- 4.3 Reactivity.- 4.4 Catalytic Activity.- 4.5 Supported Metals with Simple Structures Derived from Supported Organometallics.- 4.6 Summary.- References.- 5. Catalysis by Molybdena-Alumina and Related Oxide Systems.- 5.1 Nature of the Catalyst.- 5.2 Nature of the Catalytic Centers.- 5.3 The Chemisorption of Hydrogen on the Catalytic Centers.- 5.4 Relationships with Catalysis.- References.- 6. Structure and Catalytic Performance of Zeolites.- 6.1 Introduction to Zeolites.- 6.2 Some Structural Considerations.- 6.3 Fundamentals of Catalysis by Zeolites: A Resume.- 6.4 Converting a Zeolite to Its Catalytically Active Form.- 6.5 Influence of Intergrowths on Catalytic Performance.- 6.6 Siting and Energetics of Guest Species Inside Zeolite Catalysts.- 6.7 Evaluating Currently Unsolved Zeolitic Structures.- 6.8 Analogy Between Zeolitic and Selective Oxidation Catalysts.- References.- 7. Structural Characterization of Molecules and Reaction Intermediates on Surfaces Using Synchrotron Radiation.- 7.1 Principles of X-Ray Absorption.- 7.1.1 General Features.- 7.1.2 Surface Extended X-Ray Absorption Fine Structure.- 7.1.3 Near Edge X-Ray Absorption Fine Structure.- 7.1.4 Apparatus.- 7.2 SEXAFS Studies of Polyatomic Adsorbates.- 7.2.1 Structure of Formate on the Cu{100} Surface.- 7.2.2 Structure of Formate on the Cu{110} Surface.- 7.2.3 Structure of Methoxy on the Cu{100} Surface.- 7.3 NEXAFS Studies of Polyatomic Adsorbates.- 7.3.1 Oxidation Intermediates on Cu{100} and Cu{110}.- 7.3.2 Hydrocarbons on Pt{111}.- 7.3.3 Sulfur-Containing Hydrocarbons on Pt{111}.- 7.4 Conclusions and Outlook.- References.- 8. Effects of Surface Impurities in Chemisorption and Catalysis.- 8.1 Experimental Details.- 8.2 Discussion.- 8.2.1 Electronegative Impurities.- a) Chemisorption.- b) Catalytic Activity.- c) Catalytic Selectivity.- 8.2.2 Electroneutral Impurities.- a) Copper Overlayer Structure.- b) Chemisorption.- c) Catalytic Activity.- 8.2.3 Electropositive Impurities.- a) Chemisorption.- b) Carbon Monoxide Dissociation Kinetics.- c) Methanation Kinetics.- d) Promotion of Higher Hydrocarbon Formation.- e) Electronic Compensation Effects.- 8.2.4 Related Theory.- 8.3 Conclusions.- References.- 9. Thermodynamics and Kinetics in Weakly Chemisorbed Phases.- 9.1 Evaluation of the Isosteric Heat and Entropy of Adsorption.- 9.2 Correlation Between Thermodynamic and Kinetic Experiments.- 9.3 Structural and Thermodynamic Data on Weakly Chemisorbed Phases.- 9.3.1 Phase Diagram for N2 Adsorbed on Ni{110} and Data for N2 on Ni {100}.- 9.3.2 The Isosteric Heat of Adsorption and the Entropy in the Adsorbed Phase for N2/Ni{110} and N2/NHIOO}.- 9.3.3 Carbon Monoxide on Low-Index Copper Single Surfaces.- 9.3.4 Thermodynamic Measurements at Very Small Coverages.- 9.4 Kinetics in Weakly Adsorbed Phases.- 9.4.1 Adsorption and Desorption Kinetics.- 9.4.2 Chemical Reactions in Weakly Chemisorbed Phases.- 9.5 Summary.- References.- 10. Kinetic and Spectroscopic Investigations of Surface Chemical Processes.- 10.1 Experimental Methods.- 10.2 Kinetic Studies of Methanol Decomposition on Ni{111}.- 10.2.1 Isothermal Decomposition of Methanol on Clean Ni{111}.- 10.2.2 Steady-State Kinetics of Methanol Decomposition on Ni {111}.- 10.3 Scanning Kinetic Spectroscopy (SKS) Methods for the Study of the Decomposition of Alcohols on Ni{111}.- 10.3.1 Rationale for the SKS Method.- 10.3.2 Methanol Decomposition on Ni{111} -SKS Measurements.- 10.3.3 Ethanol Decomposition on Ni{111} Using SKS.- 10.4 Summary of Results.- References.- 11. Raman Spectroscopy of Adsorbed Molecules.- 11.1 Unenhanced Raman Spectroscopy of Adsorbed Molecules.- 11.1.1 Surface Electromagnetic Fields.- 11.1.2 Angle-Resolved Surface Raman Scattering.- 11.1.3 Selection Rules.- 11.1.4 Examples.- 11.2 Surface-Enhanced Raman Spectroscopy.- 11.2.1 Electromagnetic Enhancement.- 11.2.2 Chemical Enhancement.- 11.3 Future Work.- References.- 12. The Time-of-Flight Atom-Probe and Its Application to Surface Analysis and Gas-Surface Interactions.- 12.1 The Time-of-Flight Atom-Probe.- 12.1.1 Basic Principles.- 12.1.2 Mass Resolution.- 12.1.3 Pulsed High-Voltage Atom-Probes.- 12.1.4 The Pulsed-Laser Time-of-Flight Atom-Probe.- 12.1.5 A Statistical Method of Counting Single Ions.- 12.1.6 Imaging Atom-Probes.- 12.1.7 A Method for Ion-Reaction-Time Amplification.- 12.2 Structural and Compositional Analysis of Solid Surfaces.- 12.2.1 Atomic Structures of Emitter Surfaces.- 12.2.2 Compositional Analysis of Surface Atomic Layers: Alloy Segregations and Impurity Segregation.- 12.3 Gas-Surface Interactions.- 12.3.1 Field Adsorption.- 12.3.2 Surface Reactivity in the Formation of H3.- 12.3.3 Atomic Steps and Reaction Intermediates in Ammonia Synthesis.- 12.4 Ion-Reaction-Time Measurement - Field Dissociation by Atomic Tunneling.- 12.5 Summary.- References.- 13. Field Emission Microscopy-1. Georg-Maria Schwab: Early Endeavours in the Science of Catalysis.- References.- 2. The Life and Times of Paul H. Emmett.- 3. Three Decades of Catalysis by Metals.- 3.1 Bifunctional Catalysis.- 3.2 Characterization of Dispersed Metals.- 3.2.1 Chemisorption Isotherms.- 3.2.2 Application of Extended X-Ray Absorption Fine Structure.- 3.2.3 Application of Nuclear Magnetic Resonance.- 3.3 Hydrocarbon Reactions on Metals.- 3.3.1 Hydrogenolysis.- 3.3.2 Hydrogenation and Dehydrogenation.- 3.3.3 Isomerization.- 3.4 Bimetallic Catalysts.- 3.4.1 Metal Alloys as Catalysts.- 3.4.2 Bimetallic Aggregates of Immiscible Components.- 3.4.3 Bimetallic Clusters.- 3.5 Summary.- References.- 4. Molecular Organometallic Chemistry and Catalysis on Metal-Oxide Surfaces.- 4.1 Synthesis.- 4.2 Structure Determination by Physical Methods.- 4.2.1 Infrared Spectroscopy.- 4.2.2 Laser Raman Spectroscopy.- 4.2.3 Inelastic Electron Tunneling Spectroscopy.- 4.2.4 Extended X-Ray Absorption Fine Structure Spectroscopy.- 4.2.5 Ultraviolet-Visible Reflectance Spectroscopy.- 4.2.6 Nuclear Magnetic Resonance (NMR).- 4.2.7 Temperature-Programmed Decomposition.- 4.2.8 High-Resolution Transmission Electron Microscopy.- 4.2.9 Other Methods and General Points.- 4.3 Reactivity.- 4.4 Catalytic Activity.- 4.5 Supported Metals with Simple Structures Derived from Supported Organometallics.- 4.6 Summary.- References.- 5. Catalysis by Molybdena-Alumina and Related Oxide Systems.- 5.1 Nature of the Catalyst.- 5.2 Nature of the Catalytic Centers.- 5.3 The Chemisorption of Hydrogen on the Catalytic Centers.- 5.4 Relationships with Catalysis.- References.- 6. Structure and Catalytic Performance of Zeolites.- 6.1 Introduction to Zeolites.- 6.2 Some Structural Considerations.- 6.3 Fundamentals of Catalysis by Zeolites: A Resume.- 6.4 Converting a Zeolite to Its Catalytically Active Form.- 6.5 Influence of Intergrowths on Catalytic Performance.- 6.6 Siting and Energetics of Guest Species Inside Zeolite Catalysts.- 6.7 Evaluating Currently Unsolved Zeolitic Structures.- 6.8 Analogy Between Zeolitic and Selective Oxidation Catalysts.- References.- 7. Structural Characterization of Molecules and Reaction Intermediates on Surfaces Using Synchrotron Radiation.- 7.1 Principles of X-Ray Absorption.- 7.1.1 General Features.- 7.1.2 Surface Extended X-Ray Absorption Fine Structure.- 7.1.3 Near Edge X-Ray Absorption Fine Structure.- 7.1.4 Apparatus.- 7.2 SEXAFS Studies of Polyatomic Adsorbates.- 7.2.1 Structure of Formate on the Cu{100} Surface.- 7.2.2 Structure of Formate on the Cu{110} Surface.- 7.2.3 Structure of Methoxy on the Cu{100} Surface.- 7.3 NEXAFS Studies of Polyatomic Adsorbates.- 7.3.1 Oxidation Intermediates on Cu{100} and Cu{110}.- 7.3.2 Hydrocarbons on Pt{111}.- 7.3.3 Sulfur-Containing Hydrocarbons on Pt{111}.- 7.4 Conclusions and Outlook.- References.- 8. Effects of Surface Impurities in Chemisorption and Catalysis.- 8.1 Experimental Details.- 8.2 Discussion.- 8.2.1 Electronegative Impurities.- a) Chemisorption.- b) Catalytic Activity.- c) Catalytic Selectivity.- 8.2.2 Electroneutral Impurities.- a) Copper Overlayer Structure.- b) Chemisorption.- c) Catalytic Activity.- 8.2.3 Electropositive Impurities.- a) Chemisorption.- b) Carbon Monoxide Dissociation Kinetics.- c) Methanation Kinetics.- d) Promotion of Higher Hydrocarbon Formation.- e) Electronic Compensation Effects.- 8.2.4 Related Theory.- 8.3 Conclusions.- References.- 9. Thermodynamics and Kinetics in Weakly Chemisorbed Phases.- 9.1 Evaluation of the Isosteric Heat and Entropy of Adsorption.- 9.2 Correlation Between Thermodynamic and Kinetic Experiments.- 9.3 Structural and Thermodynamic Data on Weakly Chemisorbed Phases.- 9.3.1 Phase Diagram for N2 Adsorbed on Ni{110} and Data for N2 on Ni {100}.- 9.3.2 The Isosteric Heat of Adsorption and the Entropy in the Adsorbed Phase for N2/Ni{110} and N2/NHIOO}.- 9.3.3 Carbon Monoxide on Low-Index Copper Single Surfaces.- 9.3.4 Thermodynamic Measurements at Very Small Coverages.- 9.4 Kinetics in Weakly Adsorbed Phases.- 9.4.1 Adsorption and Desorption Kinetics.- 9.4.2 Chemical Reactions in Weakly Chemisorbed Phases.- 9.5 Summary.- References.- 10. Kinetic and Spectroscopic Investigations of Surface Chemical Processes.- 10.1 Experimental Methods.- 10.2 Kinetic Studies of Methanol Decomposition on Ni{111}.- 10.2.1 Isothermal Decomposition of Methanol on Clean Ni{111}.- 10.2.2 Steady-State Kinetics of Methanol Decomposition on Ni {111}.- 10.3 Scanning Kinetic Spectroscopy (SKS) Methods for the Study of the Decomposition of Alcohols on Ni{111}.- 10.3.1 Rationale for the SKS Method.- 10.3.2 Methanol Decomposition on Ni{111} -SKS Measurements.- 10.3.3 Ethanol Decomposition on Ni{111} Using SKS.- 10.4 Summary of Results.- References.- 11. Raman Spectroscopy of Adsorbed Molecules.- 11.1 Unenhanced Raman Spectroscopy of Adsorbed Molecules.- 11.1.1 Surface Electromagnetic Fields.- 11.1.2 Angle-Resolved Surface Raman Scattering.- 11.1.3 Selection Rules.- 11.1.4 Examples.- 11.2 Surface-Enhanced Raman Spectroscopy.- 11.2.1 Electromagnetic Enhancement.- 11.2.2 Chemical Enhancement.- 11.3 Future Work.- References.- 12. The Time-of-Flight Atom-Probe and Its Application to Surface Analysis and Gas-Surface Interactions.- 12.1 The Time-of-Flight Atom-Probe.- 12.1.1 Basic Principles.- 12.1.2 Mass Resolution.- 12.1.3 Pulsed High-Voltage Atom-Probes.- 12.1.4 The Pulsed-Laser Time-of-Flight Atom-Probe.- 12.1.5 A Statistical Method of Counting Single Ions.- 12.1.6 Imaging Atom-Probes.- 12.1.7 A Method for Ion-Reaction-Time Amplification.- 12.2 Structural and Compositional Analysis of Solid Surfaces.- 12.2.1 Atomic Structures of Emitter Surfaces.- 12.2.2 Compositional Analysis of Surface Atomic Layers: Alloy Segregations and Impurity Segregation.- 12.3 Gas-Surface Interactions.- 12.3.1 Field Adsorption.- 12.3.2 Surface Reactivity in the Formation of H3.- 12.3.3 Atomic Steps and Reaction Intermediates in Ammonia Synthesis.- 12.4 Ion-Reaction-Time Measurement - Field Dissociation by Atomic Tunneling.- 12.5 Summary.- References.- 13. Field Emission Microscopy-Trends and Perspectives.- 13.1 Historical Background.- 13.2 Some Comments Related to Curved and Planar Surfaces.- 13.3 Field-Electron Emission Microscopy.- 13.3.1 Conceptual.- 13.3.2 The Microscopy.- a) The Microscope.- b) Magnification.- c) Contrast.- d) Resolution.- e) The Specimen.- f) Criteria for a Clean Surface.- g) Specimen Materials.- 13.3.3 Selected Field-Electron Emission Microscopy Research.- a) Visibility of Atomic and Molecular Objects.- b) Surface Diffusion.- c) Nucleation and Crystal Growth.- d) Cleaning Platinum Field Emitters.- e) Electron Energy Distributions.- 13.4 Field-Ion Microscopy.- 13.4.1 The Microscopy.- a) The Microscope.- b) The Image.- c) More About Field Evaporation.- d) The Specimen.- 13.4.2 Selected Field-Ion Microscopy Research.- a) Surface Diffusion.- b) Clean-Surface bcc{001} Atomic Structure.- 13.5 Summary and Future Outlook.- References.- 14. Scanning Tunneling Microscopy.- 14.1 Introduction.- 14.2 Experimental Considerations.- 14.3 Tunnel Current and Tunnel Barrier.- 14.3.1 Basic Model Calculations and Approximations.- 14.3.2 Calculations for Nonplanar Tip-Surface Geometries.- 14.3.3 The Effect of the Image Potential.- 14.3.4 Resolution of the STM.- 14.3.5 Sample Conductivity.- 14.3.6 Effect of Adsorbates.- 14.4 Surface Microscopy.- 14.4.1 Topography of Flat Surfaces.- 14.4.2 Periodic Structures of Single-Crystalline Surfaces.- 14.4.3 Surface Defects.- 14.4.4 Reactivity and Stability of Surfaces.- 14.4.5 Non-Surface-Science Applications of the STM.- 14.4.6 Surface Diffusion and Surface Mobility.- 14.5 Tunneling Spectroscopy.- 14.5.1 Valence Band Spectroscopy.- 14.5.2 Resonant Tunneling.- 14.5.3 Scanning Tunneling Spectroscopy.- 14.5.4 The Work Function and Work Function Images.- 14.6 Conclusions.- References.- 15. High-Resolution Electron Microscopy in Surface Science.- 15.1 Imaging Methods.- 15.1.1 Transmission Electron Microscopy.- 15.1.2 Reflection Electron Microscopy.- 15.2 Instrumentation and Accessories.- 15.3 Survey of Results.- 15.3.1 Bright-Field Transmission Electron Microscopy.- 15.3.2 Dark-Field Transmission Electron Microscopy.- 15.3.3 Reflection Electron Microscopy.- 15.3.4 Profile Imaging.- 15.3.5 Dynamic Processes.- 15.3.6 Image Contrast Calculations.- 15.4 Perspective and Outlook.- 15.5 Further Reading.- References.- 16. Surface Electronic States.- 16.1 Experimental Techniques.- 16.2 Valence Electronic States: Ideal Surfaces.- 16.3 Valence States: New Developments.- 16.4 Core Levels: Surfaces and Interfaces in Technology.- References.- 17. The Use of Spin-Polarized Electrons in Surface Analysis.- 17.1 Introduction to Spin-Polarized Electrons.- 17.2 Nonmagnetic Materials.- 17.2.1 Electron Diffraction.- 17.2.2 Application of Spin-Polarized LEED: Spin-Polarization Detectors.- 17.2.3 Photoemission.- 17.2.4 Application of Spin-Polarized Photoemission: Polarized Electron Sources.- 17.3 Magnetic Materials.- 17.3.1 Elastic Electron Scattering.- 17.3.2 Secondary Electron Emission and Magnetic Structure Analysis.- 17.3.3 Electronic Structure and Stoner Excitations.- 17.4 Conclusion.- References.- 18. Inverse Photoemission Spectroscopy.- 18.1 Historical Overview.- 18.2 Instrumentation.- 18.3 Density of States.- 18.4 Band Structures and Surface States.- 18.5 Adsorbate States.- 18.6 Summary and Outlook.- References.- 19. The Structure of Surfaces.- 19.1 Structure of the GaAs{lll}-(2 x2) Surface.- 19.1.1 Reconstruction Mechanisms on the GaAsdll} Surface.- 19.1.2 Vacancy-Buckling Model of GaAs{lll}-(2x2).- 19.2 Structure of the GaAs{110}-(l x1) Surface.- 19.2.1 Surface Relaxation on the {110} Surface.- 19.2.2 Value of the ? Tilt Angle on the {110} Surface.- 19.3 Structure of the GaP{lll}-(2 x2) Surface.- 19.4 General Trend on Reconstructed {110} and {111} Faces of 111-V Compounds.- 19.5 Forward-Focusing Effects in X-Ray Photoemission Spectroscopy.- 19.5.1 Physical Origin of Peaks in Egelhoff's- Experiment.- 19.5.2 The Small-Atom (Plane-wave) Approximation.- 19.5.3 Temperature Effect.- 19.5.4 Effect of Multiple Scattering.- 19.6 Structure Analysis by High-Resolution Electron Energy-Loss Spectroscopy.- 19.7 Conclusion.- References.- 20. Surface Structure Analysis by Low-Energy Alkali Ion Scattering.- 20.1 Theoretical Background.- 20.1.1 Single Scattering and Differential Scattering Cross Section.- 20.1.2 Double Scattering.- 20.1.3 Shadowing, Blocking, and Focusing
  • Thermal Vibrations
  • Inelastic Scattering.- 20.1.4 Neutralization.- 20.2 Experimental Techniques.- 20.3 Basic Studies of the Scattering Mechanisms.- 20.4 Structure Analysis.- 20.5 Conclusions and Summary.- References.- 21. Multilayer Adsorption and Wetting Phenomena.- 21.1 Introduction to Wetting and Layering Behaviors.- 21.2 Theoretical Approaches.- 21.3 Applications.- 21.3.1 Importance of Relative Potential Strengths and Ranges.- 21.3.2 Solid Films: Wetting and Melting.- 21.3.3 Triple-Point Wetting.- 21.3.4 Epitaxy.- 21.4 Summary and Future Directions.- References.- 22. Diffraction Studies of Layering and Wetting Transitions.- 22.1 Introduction.- 22.2 Electron Diffraction Studies of Wetting Behavior.- 22.2.1 Experimental Methods.- 22.2.2 RHEED Studies of Wetting.- a) Two- and Three-Dimensional Diffraction Patterns -1. Georg-Maria Schwab: Early Endeavours in the Science of Catalysis.- References.- 2. The Life and Times of Paul H. Emmett.- 3. Three Decades of Catalysis by Metals.- 3.1 Bifunctional Catalysis.- 3.2 Characterization of Dispersed Metals.- 3.2.1 Chemisorption Isotherms.- 3.2.2 Application of Extended X-Ray Absorption Fine Structure.- 3.2.3 Application of Nuclear Magnetic Resonance.- 3.3 Hydrocarbon Reactions on Metals.- 3.3.1 Hydrogenolysis.- 3.3.2 Hydrogenation and Dehydrogenation.- 3.3.3 Isomerization.- 3.4 Bimetallic Catalysts.- 3.4.1 Metal Alloys as Catalysts.- 3.4.2 Bimetallic Aggregates of Immiscible Components.- 3.4.3 Bimetallic Clusters.- 3.5 Summary.- References.- 4. Molecular Organometallic Chemistry and Catalysis on Metal-Oxide Surfaces.- 4.1 Synthesis.- 4.2 Structure Determination by Physical Methods.- 4.2.1 Infrared Spectroscopy.- 4.2.2 Laser Raman Spectroscopy.- 4.2.3 Inelastic Electron Tunneling Spectroscopy.- 4.2.4 Extended X-Ray Absorption Fine Structure Spectroscopy.- 4.2.5 Ultraviolet-Visible Reflectance Spectroscopy.- 4.2.6 Nuclear Magnetic Resonance (NMR).- 4.2.7 Temperature-Programmed Decomposition.- 4.2.8 High-Resolution Transmission Electron Microscopy.- 4.2.9 Other Methods and General Points.- 4.3 Reactivity.- 4.4 Catalytic Activity.- 4.5 Supported Metals with Simple Structures Derived from Supported Organometallics.- 4.6 Summary.- References.- 5. Catalysis by Molybdena-Alumina and Related Oxide Systems.- 5.1 Nature of the Catalyst.- 5.2 Nature of the Catalytic Centers.- 5.3 The Chemisorption of Hydrogen on the Catalytic Centers.- 5.4 Relationships with Catalysis.- References.- 6. Structure and Catalytic Performance of Zeolites.- 6.1 Introduction to Zeolites.- 6.2 Some Structural Considerations.- 6.3 Fundamentals of Catalysis by Zeolites: A Resume.- 6.4 Converting a Zeolite to Its Catalytically Active Form.- 6.5 Influence of Intergrowths on Catalytic Performance.- 6.6 Siting and Energetics of Guest Species Inside Zeolite Catalysts.- 6.7 Evaluating Currently Unsolved Zeolitic Structures.- 6.8 Analogy Between Zeolitic and Selective Oxidation Catalysts.- References.- 7. Structural Characterization of Molecules and Reaction Intermediates on Surfaces Using Synchrotron Radiation.- 7.1 Principles of X-Ray Absorption.- 7.1.1 General Features.- 7.1.2 Surface Extended X-Ray Absorption Fine Structure.- 7.1.3 Near Edge X-Ray Absorption Fine Structure.- 7.1.4 Apparatus.- 7.2 SEXAFS Studies of Polyatomic Adsorbates.- 7.2.1 Structure of Formate on the Cu{100} Surface.- 7.2.2 Structure of Formate on the Cu{110} Surface.- 7.2.3 Structure of Methoxy on the Cu{100} Surface.- 7.3 NEXAFS Studies of Polyatomic Adsorbates.- 7.3.1 Oxidation Intermediates on Cu{100} and Cu{110}.- 7.3.2 Hydrocarbons on Pt{111}.- 7.3.3 Sulfur-Containing Hydrocarbons on Pt{111}.- 7.4 Conclusions and Outlook.- References.- 8. Effects of Surface Impurities in Chemisorption and Catalysis.- 8.1 Experimental Details.- 8.2 Discussion.- 8.2.1 Electronegative Impurities.- a) Chemisorption.- b) Catalytic Activity.- c) Catalytic Selectivity.- 8.2.2 Electroneutral Impurities.- a) Copper Overlayer Structure.- b) Chemisorption.- c) Catalytic Activity.- 8.2.3 Electropositive Impurities.- a) Chemisorption.- b) Carbon Monoxide Dissociation Kinetics.- c) Methanation Kinetics.- d) Promotion of Higher Hydrocarbon Formation.- e) Electronic Compensation Effects.- 8.2.4 Related Theory.- 8.3 Conclusions.- References.- 9. Thermodynamics and Kinetics in Weakly Chemisorbed Phases.- 9.1 Evaluation of the Isosteric Heat and Entropy of Adsorption.- 9.2 Correlation Between Thermodynamic and Kinetic Experiments.- 9.3 Structural and Thermodynamic Data on Weakly Chemisorbed Phases.- 9.3.1 Phase Diagram for N2 Adsorbed on Ni{110} and Data for N2 on Ni {100}.- 9.3.2 The Isosteric Heat of Adsorption and the Entropy in the Adsorbed Phase for N2/Ni{110} and N2/NHIOO}.- 9.3.3 Carbon Monoxide on Low-Index Copper Single Surfaces.- 9.3.4 Thermodynamic Measurements at Very Small Coverages.- 9.4 Kinetics in Weakly Adsorbed Phases.- 9.4.1 Adsorption and Desorption Kinetics.- 9.4.2 Chemical Reactions in Weakly Chemisorbed Phases.- 9.5 Summary.- References.- 10. Kinetic and Spectroscopic Investigations of Surface Chemical Processes.- 10.1 Experimental Methods.- 10.2 Kinetic Studies of Methanol Decomposition on Ni{111}.- 10.2.1 Isothermal Decomposition of Methanol on Clean Ni{111}.- 10.2.2 Steady-State Kinetics of Methanol Decomposition on Ni {111}.- 10.3 Scanning Kinetic Spectroscopy (SKS) Methods for the Study of the Decomposition of Alcohols on Ni{111}.- 10.3.1 Rationale for the SKS Method.- 10.3.2 Methanol Decomposition on Ni{111} -SKS Measurements.- 10.3.3 Ethanol Decomposition on Ni{111} Using SKS.- 10.4 Summary of Results.- References.- 11. Raman Spectroscopy of Adsorbed Molecules.- 11.1 Unenhanced Raman Spectroscopy of Adsorbed Molecules.- 11.1.1 Surface Electromagnetic Fields.- 11.1.2 Angle-Resolved Surface Raman Scattering.- 11.1.3 Selection Rules.- 11.1.4 Examples.- 11.2 Surface-Enhanced Raman Spectroscopy.- 11.2.1 Electromagnetic Enhancement.- 11.2.2 Chemical Enhancement.- 11.3 Future Work.- References.- 12. The Time-of-Flight Atom-Probe and Its Application to Surface Analysis and Gas-Surface Interactions.- 12.1 The Time-of-Flight Atom-Probe.- 12.1.1 Basic Principles.- 12.1.2 Mass Resolution.- 12.1.3 Pulsed High-Voltage Atom-Probes.- 12.1.4 The Pulsed-Laser Time-of-Flight Atom-Probe.- 12.1.5 A Statistical Method of Counting Single Ions.- 12.1.6 Imaging Atom-Probes.- 12.1.7 A Method for Ion-Reaction-Time Amplification.- 12.2 Structural and Compositional Analysis of Solid Surfaces.- 12.2.1 Atomic Structures of Emitter Surfaces.- 12.2.2 Compositional Analysis of Surface Atomic Layers: Alloy Segregations and Impurity Segregation.- 12.3 Gas-Surface Interactions.- 12.3.1 Field Adsorption.- 12.3.2 Surface Reactivity in the Formation of H3.- 12.3.3 Atomic Steps and Reaction Intermediates in Ammonia Synthesis.- 12.4 Ion-Reaction-Time Measurement - Field Dissociation by Atomic Tunneling.- 12.5 Summary.- References.- 13. Field Emission Microscopy-Trends and Perspectives.- 13.1 Historical Background.- 13.2 Some Comments Related to Curved and Planar Surfaces.- 13.3 Field-Electron Emission Microscopy.- 13.3.1 Conceptual.- 13.3.2 The Microscopy.- a) The Microscope.- b) Magnification.- c) Contrast.- d) Resolution.- e) The Specimen.- f) Criteria for a Clean Surface.- g) Specimen Materials.- 13.3.3 Selected Field-Electron Emission Microscopy Research.- a) Visibility of Atomic and Molecular Objects.- b) Surface Diffusion.- c) Nucleation and Crystal Growth.- d) Cleaning Platinum Field Emitters.- e) Electron Energy Distributions.- 13.4 Field-Ion Microscopy.- 13.4.1 The Microscopy.- a) The Microscope.- b) The Image.- c) More About Field Evaporation.- d) The Specimen.- 13.4.2 Selected Field-Ion Microscopy Research.- a) Surface Diffusion.- b) Clean-Surface bcc{001} Atomic Structure.- 13.5 Summary and Future Outlook.- References.- 14. Scanning Tunneling Microscopy.- 14.1 Introduction.- 14.2 Experimental Considerations.- 14.3 Tunnel Current and Tunnel Barrier.- 14.3.1 Basic Model Calculations and Approximations.- 14.3.2 Calculations for Nonplanar Tip-Surface Geometries.- 14.3.3 The Effect of the Image Potential.- 14.3.4 Resolution of the STM.- 14.3.5 Sample Conductivity.- 14.3.6 Effect of Adsorbates.- 14.4 Surface Microscopy.- 14.4.1 Topography of Flat Surfaces.- 14.4.2 Periodic Structures of Single-Crystalline Surfaces.- 14.4.3 Surface Defects.- 14.4.4 Reactivity and Stability of Surfaces.- 14.4.5 Non-Surface-Science Applications of the STM.- 14.4.6 Surface Diffusion and Surface Mobility.- 14.5 Tunneling Spectroscopy.- 14.5.1 Valence Band Spectroscopy.- 14.5.2 Resonant Tunneling.- 14.5.3 Scanning Tunneling Spectroscopy.- 14.5.4 The Work Function and Work Function Images.- 14.6 Conclusions.- References.- 15. High-Resolution Electron Microscopy in Surface Science.- 15.1 Imaging Methods.- 15.1.1 Transmission Electron Microscopy.- 15.1.2 Reflection Electron Microscopy.- 15.2 Instrumentation and Accessories.- 15.3 Survey of Results.- 15.3.1 Bright-Field Transmission Electron Microscopy.- 15.3.2 Dark-Field Transmission Electron Microscopy.- 15.3.3 Reflection Electron Microscopy.- 15.3.4 Profile Imaging.- 15.3.5 Dynamic Processes.- 15.3.6 Image Contrast Calculations.- 15.4 Perspective and Outlook.- 15.5 Further Reading.- References.- 16. Surface Electronic States.- 16.1 Experimental Techniques.- 16.2 Valence Electronic States: Ideal Surfaces.- 16.3 Valence States: New Developments.- 16.4 Core Levels: Surfaces and Interfaces in Technology.- References.- 17. The Use of Spin-Polarized Electrons in Surface Analysis.- 17.1 Introduction to Spin-Polarized Electrons.- 17.2 Nonmagnetic Materials.- 17.2.1 Electron Diffraction.- 17.2.2 Application of Spin-Polarized LEED: Spin-Polarization Detectors.- 17.2.3 Photoemission.- 17.2.4 Application of Spin-Polarized Photoemission: Polarized Electron Sources.- 17.3 Magnetic Materials.- 17.3.1 Elastic Electron Scattering.- 17.3.2 Secondary Electron Emission and Magnetic Structure Analysis.- 17.3.3 Electronic Structure and Stoner Excitations.- 17.4 Conclusion.- References.- 18. Inverse Photoemission Spectroscopy.- 18.1 Historical Overview.- 18.2 Instrumentation.- 18.3 Density of States.- 18.4 Band Structures and Surface States.- 18.5 Adsorbate States.- 18.6 Summary and Outlook.- References.- 19. The Structure of Surfaces.- 19.1 Structure of the GaAs{lll}-(2 x2) Surface.- 19.1.1 Reconstruction Mechanisms on the GaAsdll} Surface.- 19.1.2 Vacancy-Buckling Model of GaAs{lll}-(2x2).- 19.2 Structure of the GaAs{110}-(l x1) Surface.- 19.2.1 Surface Relaxation on the {110} Surface.- 19.2.2 Value of the ? Tilt Angle on the {110} Surface.- 19.3 Structure of the GaP{lll}-(2 x2) Surface.- 19.4 General Trend on Reconstructed {110} and {111} Faces of 111-V Compounds.- 19.5 Forward-Focusing Effects in X-Ray Photoemission Spectroscopy.- 19.5.1 Physical Origin of Peaks in Egelhoff's- Experiment.- 19.5.2 The Small-Atom (Plane-wave) Approximation.- 19.5.3 Temperature Effect.- 19.5.4 Effect of Multiple Scattering.- 19.6 Structure Analysis by High-Resolution Electron Energy-Loss Spectroscopy.- 19.7 Conclusion.- References.- 20. Surface Structure Analysis by Low-Energy Alkali Ion Scattering.- 20.1 Theoretical Background.- 20.1.1 Single Scattering and Differential Scattering Cross Section.- 20.1.2 Double Scattering.- 20.1.3 Shadowing, Blocking, and Focusing
  • Thermal Vibrations
  • Inelastic Scattering.- 20.1.4 Neutralization.- 20.2 Experimental Techniques.- 20.3 Basic Studies of the Scattering Mechanisms.- 20.4 Structure Analysis.- 20.5 Conclusions and Summary.- References.- 21. Multilayer Adsorption and Wetting Phenomena.- 21.1 Introduction to Wetting and Layering Behaviors.- 21.2 Theoretical Approaches.- 21.3 Applications.- 21.3.1 Importance of Relative Potential Strengths and Ranges.- 21.3.2 Solid Films: Wetting and Melting.- 21.3.3 Triple-Point Wetting.- 21.3.4 Epitaxy.- 21.4 Summary and Future Directions.- References.- 22. Diffraction Studies of Layering and Wetting Transitions.- 22.1 Introduction.- 22.2 Electron Diffraction Studies of Wetting Behavior.- 22.2.1 Experimental Methods.- 22.2.2 RHEED Studies of Wetting.- a) Two- and Three-Dimensional Diffraction Patterns - Streaks vs. Spots.- b) Experimental Results.- 22.2.3 Combined RHEED and LEED Studies of the CF4-on- Graphite Wetting Transition.- a) RHEED Measurements.- b) LEED Measurements.- 22.2.4 Summary of RHEED and LEED Investigations.- 22.3 X-Ray and Neutron Studies of Layering Transitions.- 22.3.1 Experimental Methods.- a) X-Ray Spectrometers.- b) Neutron Spectrometers.- c) Samples.- d) Diffraction from 2D Powders.- e) Samples and Thermometry.- 22.3.2 X-Ray and Neutron Studies of Layering Transitions in Ethylene Adsorbed on Graphite Basal Plane Surfaces.- 22.3.3 X-Ray and Neutron Studies of Layering Transitions in Co-Adsorbed Xenon and Ethylene Films on Graphite.- 22.3.4 Summary of X-Ray and Neutron Investigations.- References.
Volume

7 : gw ISBN 9783540500445

Description

This volume contains review articles written by the invited speakers at the eighth International Summer Institute in Surface Science (ISISS 1987), held at the University of Wisconsin-Milwaukee in August of 1987. During the course of ISISS, invited speakers, all internationally recognized experts in the various fields of surface science, present tutorial review lectures. In addition, these experts are asked to write review articles on their lecture topic. Former ISISS speakers serve as advisors concerning the selection of speakers and lecture topics. Em- phasis is given to those areas which have not been covered in depth by recent Summer Institutes, as well as to areas which have recently gained in significance and in which important progress has been made. Because of space limitations, no individual volume of Chemistry and Physics of Solid Surfaces can possibly cover the whole area of modem surface science, or even give a complete survey of recent pro- gress in the field. However, an attempt is made to present a balanced overview in the series as a whole. With its comprehensive literature references and extensive subject indices, this series has become a valu- able resource for experts and students alike. The collected articles, which stress particularly the gas-solid interface, have been published under the following titles: Surface Science: Recent Progress and Perspectives, Crit. Rev. Solid State Sci. 4, 125-559 (1974) Chemistry and Physics of Solid Surfaces, Vols. I, II, and III (CRC Press Boca Raton, FL 1976, 1979, and 1982); Vols.

Table of Contents

1. Activated Chemisorption.- 1.1 A Brief History.- 1.2 Classification of Activated Chemisorption.- 1.2.1 Molecular Structure.- 1.2.2 Electronic Structure of the Gas.- 1.2.3 Electronic Structure of the Solid.- 1.2.4 Atomic Arrangement of the Solid.- 1.2.5 Strength of Chemisorption Bonding.- 1.2.6 Surprises.- 1.3 Formal Kinetics.- 1.3.1 Concentration Dependence of Chemisorption Rates.- 1.3.2 Temperature Dependencies.- 1.3.3 Angular and Mass Dependence.- 1.4 Case Studies in Activated Adsorption.- 1.4.1 Methane and Other Alkanes on Metal Surfaces.- 1.4.2 Hydrogen on Copper.- 1.4.3 Hydrogen on Elemental Semiconductors.- 1.4.4 Activated Adsorption on Densely Packed Planes.- a) Hydrogen and Nitrogen on W{110}, Re{0001}, and Ru{0001}.- b) Hydrogen on Platinum {111}.- c) Hydrogen on Nickel {111} and {110}.- 1.4.5 Slow Chemisorption of Nitrogen.- a) Nitrogen on Platinum Group Metals.- b) Chemisorption of Nitrogen on Iron.- 1.4.6 A Surprise: Oxygen on W{110}.- 1.5 Summary.- References.- 2. Physisorbed Rare Gas Adlayers.- 2.1 Experimental Techniques.- 2.1.1 General Remarks.- 2.1.2 Probe Particles.- a) Electrons.- b) Neutrons.- c) X-Ray Photons.- d) Helium Atoms.- 2.2 Solid-Solid Transitions in Two Dimensions.- 2.2.1 Commensurability.- 2.2.2 Fundamentals of the Theory Describing the Commensurate-Incommensurate Transition in 2D.- 2.2.3 The C-I Transition of Monolayer Xe on Pt{111}.- 2.2.4 Can High Order Commensurate Adlayers be Distinguished from Incommensurate Ones?.- i) Thermal expansion.- ii) Commensurate buckling.- iii) Lattice dynamical criterion.- iv) Bragg peak singularities.- 2.2.5 The I-HOC Phase Transition of Monolayer Kr on Pt{111}.- 2.2.6 Rotational Epitaxy of Monolayers.- 2.3 Multilayer Growth of Rare Gases.- 2.3.1 Dynamical Coupling Between Adlayer and Substrate.- 2.3.2 Layer-by-Layer Evolution of the Lattice Dynamics.- 2.3.3 Growth Mode and the Scale of Substrate Strength.- 2.3.4 Epitaxial Layer Growth of Xe on Pt{111}.- 2.4 Conclusion.- References.- 3. Infrared Spectroscopy of Semiconductor Surfaces.- 3.1 Theoretical Framework.- 3.1.1 Macroscopic Theory (Three-Layer Model).- 3.1.2 Microscopic Model of the Active Layer.- 3.1.3 Model for Electronic Absorption.- 3.1.4 Discussion of the Assumption of Sharp Boundaries.- 3.1.5 First-Principle Calculations.- 3.2. Experimental Geometries and Techniques.- 3.2.1 Vibrational Modes in Substrate Optical Gap.- 3.2.2 Vibrational Modes in Substrate Absorption Region.- 3.2.3 Experimental Apparatus.- a) Surface Infrared Spectrometer.- b) Sample Geometry.- c) Other Techniques.- 3.3 Selected Examples.- 3.3.1 Structure of the Si{100}-(2x1)H System.- 3.3.2 H-saturated Si{100} and Ge{100} Surfaces.- 3.3.3 Dynamics of H on Si{100}.- 3.3.4 H2O on Si{100}.- 3.3.5 Electronic Absorption of Si{100} and Si{111}.- a) Si{100}.- b) Si{111}.- 3.3.6 Chemistry at Semiconductor Surfaces.- 3.4 Problems and Future Directions.- 3.5 Conclusions.- References.- 4. Surface Phonons -1. Activated Chemisorption.- 1.1 A Brief History.- 1.2 Classification of Activated Chemisorption.- 1.2.1 Molecular Structure.- 1.2.2 Electronic Structure of the Gas.- 1.2.3 Electronic Structure of the Solid.- 1.2.4 Atomic Arrangement of the Solid.- 1.2.5 Strength of Chemisorption Bonding.- 1.2.6 Surprises.- 1.3 Formal Kinetics.- 1.3.1 Concentration Dependence of Chemisorption Rates.- 1.3.2 Temperature Dependencies.- 1.3.3 Angular and Mass Dependence.- 1.4 Case Studies in Activated Adsorption.- 1.4.1 Methane and Other Alkanes on Metal Surfaces.- 1.4.2 Hydrogen on Copper.- 1.4.3 Hydrogen on Elemental Semiconductors.- 1.4.4 Activated Adsorption on Densely Packed Planes.- a) Hydrogen and Nitrogen on W{110}, Re{0001}, and Ru{0001}.- b) Hydrogen on Platinum {111}.- c) Hydrogen on Nickel {111} and {110}.- 1.4.5 Slow Chemisorption of Nitrogen.- a) Nitrogen on Platinum Group Metals.- b) Chemisorption of Nitrogen on Iron.- 1.4.6 A Surprise: Oxygen on W{110}.- 1.5 Summary.- References.- 2. Physisorbed Rare Gas Adlayers.- 2.1 Experimental Techniques.- 2.1.1 General Remarks.- 2.1.2 Probe Particles.- a) Electrons.- b) Neutrons.- c) X-Ray Photons.- d) Helium Atoms.- 2.2 Solid-Solid Transitions in Two Dimensions.- 2.2.1 Commensurability.- 2.2.2 Fundamentals of the Theory Describing the Commensurate-Incommensurate Transition in 2D.- 2.2.3 The C-I Transition of Monolayer Xe on Pt{111}.- 2.2.4 Can High Order Commensurate Adlayers be Distinguished from Incommensurate Ones?.- i) Thermal expansion.- ii) Commensurate buckling.- iii) Lattice dynamical criterion.- iv) Bragg peak singularities.- 2.2.5 The I-HOC Phase Transition of Monolayer Kr on Pt{111}.- 2.2.6 Rotational Epitaxy of Monolayers.- 2.3 Multilayer Growth of Rare Gases.- 2.3.1 Dynamical Coupling Between Adlayer and Substrate.- 2.3.2 Layer-by-Layer Evolution of the Lattice Dynamics.- 2.3.3 Growth Mode and the Scale of Substrate Strength.- 2.3.4 Epitaxial Layer Growth of Xe on Pt{111}.- 2.4 Conclusion.- References.- 3. Infrared Spectroscopy of Semiconductor Surfaces.- 3.1 Theoretical Framework.- 3.1.1 Macroscopic Theory (Three-Layer Model).- 3.1.2 Microscopic Model of the Active Layer.- 3.1.3 Model for Electronic Absorption.- 3.1.4 Discussion of the Assumption of Sharp Boundaries.- 3.1.5 First-Principle Calculations.- 3.2. Experimental Geometries and Techniques.- 3.2.1 Vibrational Modes in Substrate Optical Gap.- 3.2.2 Vibrational Modes in Substrate Absorption Region.- 3.2.3 Experimental Apparatus.- a) Surface Infrared Spectrometer.- b) Sample Geometry.- c) Other Techniques.- 3.3 Selected Examples.- 3.3.1 Structure of the Si{100}-(2x1)H System.- 3.3.2 H-saturated Si{100} and Ge{100} Surfaces.- 3.3.3 Dynamics of H on Si{100}.- 3.3.4 H2O on Si{100}.- 3.3.5 Electronic Absorption of Si{100} and Si{111}.- a) Si{100}.- b) Si{111}.- 3.3.6 Chemistry at Semiconductor Surfaces.- 3.4 Problems and Future Directions.- 3.5 Conclusions.- References.- 4. Surface Phonons - Theory.- 4.1 Discoveries and Advances.- 4.1.1 Advances in Experimental Studies of Surface Phonons.- 4.1.2 New Computational Methods.- A) Clean Surfaces.- a) Spectral Densities.- b) Surface Phonons and Resonances.- c) Anharmonic Effects.- d) First Principles Calculations of Surface Phonon Dispersion Curves.- B) Adsorbate Covered Surfaces.- a) A Single Adparticle.- b) A Periodic Array of Adatoms.- 4.2 Surface Phonons on Complex Crystals and Structures.- 4.2.1 Surface Phonon Anomalies Caused by the Electron-Phonon Interaction.- 4.2.2 Surface Phonon Kohn Anomalies.- 4.2.3 Molecular Crystals.- 4.2.4 Crystal Surfaces with High Miller Indices.- 4.2.5 Reconstructed Surfaces.- 4.2.6 Amorphous Media.- 4.2.7 An Incommensurate Array of Adatoms.- 4.3 Some Directions for Future Research.- References.- 5. Interpretation of the NEXAFS Spectra of Adsorbates Using Multiple Scattering Calculations.- 5.1 Multiple Scattering Calculations of Near Edge Spectra of Molecules.- 5.2 Atomic and Diatomic Adsorbates.- 5.3 Computational Method for Complex Molecules and Clusters.- 5.4 More Complex Adsorbates.- 5.4.1 Ethylene and Ethylidyne on Pt{111}.- 5.4.2 Benzene on Pt{111}.- 5.4.3 Saturated Cyclic Hydrocarbons.- 5.4.4 Thiophene and Platinum Metallacycle.- 5.5 Conclusions.- References.- 6. Near-Edge X-Ray Absorption Fine Structure Spectroscopy: A Probe of Local Bonding for Organic Gases, Solids, Adsorbates, and Polymers.- 6.1 Development of NEXAFS: An Overview.- 6.2 Experimental Details.- 6.3 Results and Analysis.- 6.3.1 The Signatures of Individual Bonds.- 6.3.2 Assembly of Diatomics to Functional Groups.- 6.3.3 The Fingerprints of Functional Groups.- 6.3.4 Assembly of Functional Groups to Macromolecules.- 6.3.5 Limitations of the Building Block Approach.- 6.4 Conclusions and Future Prospects.- References.- 7. Surface Kinetics with Near Edge X-Ray Absorption Fine Structure.- 7.1 An Overview of Methods for Characterizing Surface Reactions.- 7.2 Transient Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a Probe of Surface Reactions.- 7.2.1 Soft X-ray Absorption Using Electron Detection.- 7.2.2 CO Desorption from the Pt{111} Surface.- 7.2.3 Pyridine Reorientation of the Ag{111} Surface.- 7.2.4 Ethylene Conversion to Ethylidyne on the Pt{111} Surface.- 7.2.5 Summary: Transient NEXAFS Using Electron Detection.- 7.3 Fluorescence Yield Near-Edge Structure (FYNES).- in the Soft X-ray Region.- 7.3.1 Apparatus.- 7.3.2 Summary: Soft X-ray Absorption Using Fluorescence Detection.- 7.4 Future Opportunities.- References.- 8. Overview of Electron Microscopy Studies of the So-Called "Strong Metal-Support Interaction"1. Activated Chemisorption.- 1.1 A Brief History.- 1.2 Classification of Activated Chemisorption.- 1.2.1 Molecular Structure.- 1.2.2 Electronic Structure of the Gas.- 1.2.3 Electronic Structure of the Solid.- 1.2.4 Atomic Arrangement of the Solid.- 1.2.5 Strength of Chemisorption Bonding.- 1.2.6 Surprises.- 1.3 Formal Kinetics.- 1.3.1 Concentration Dependence of Chemisorption Rates.- 1.3.2 Temperature Dependencies.- 1.3.3 Angular and Mass Dependence.- 1.4 Case Studies in Activated Adsorption.- 1.4.1 Methane and Other Alkanes on Metal Surfaces.- 1.4.2 Hydrogen on Copper.- 1.4.3 Hydrogen on Elemental Semiconductors.- 1.4.4 Activated Adsorption on Densely Packed Planes.- a) Hydrogen and Nitrogen on W{110}, Re{0001}, and Ru{0001}.- b) Hydrogen on Platinum {111}.- c) Hydrogen on Nickel {111} and {110}.- 1.4.5 Slow Chemisorption of Nitrogen.- a) Nitrogen on Platinum Group Metals.- b) Chemisorption of Nitrogen on Iron.- 1.4.6 A Surprise: Oxygen on W{110}.- 1.5 Summary.- References.- 2. Physisorbed Rare Gas Adlayers.- 2.1 Experimental Techniques.- 2.1.1 General Remarks.- 2.1.2 Probe Particles.- a) Electrons.- b) Neutrons.- c) X-Ray Photons.- d) Helium Atoms.- 2.2 Solid-Solid Transitions in Two Dimensions.- 2.2.1 Commensurability.- 2.2.2 Fundamentals of the Theory Describing the Commensurate-Incommensurate Transition in 2D.- 2.2.3 The C-I Transition of Monolayer Xe on Pt{111}.- 2.2.4 Can High Order Commensurate Adlayers be Distinguished from Incommensurate Ones?.- i) Thermal expansion.- ii) Commensurate buckling.- iii) Lattice dynamical criterion.- iv) Bragg peak singularities.- 2.2.5 The I-HOC Phase Transition of Monolayer Kr on Pt{111}.- 2.2.6 Rotational Epitaxy of Monolayers.- 2.3 Multilayer Growth of Rare Gases.- 2.3.1 Dynamical Coupling Between Adlayer and Substrate.- 2.3.2 Layer-by-Layer Evolution of the Lattice Dynamics.- 2.3.3 Growth Mode and the Scale of Substrate Strength.- 2.3.4 Epitaxial Layer Growth of Xe on Pt{111}.- 2.4 Conclusion.- References.- 3. Infrared Spectroscopy of Semiconductor Surfaces.- 3.1 Theoretical Framework.- 3.1.1 Macroscopic Theory (Three-Layer Model).- 3.1.2 Microscopic Model of the Active Layer.- 3.1.3 Model for Electronic Absorption.- 3.1.4 Discussion of the Assumption of Sharp Boundaries.- 3.1.5 First-Principle Calculations.- 3.2. Experimental Geometries and Techniques.- 3.2.1 Vibrational Modes in Substrate Optical Gap.- 3.2.2 Vibrational Modes in Substrate Absorption Region.- 3.2.3 Experimental Apparatus.- a) Surface Infrared Spectrometer.- b) Sample Geometry.- c) Other Techniques.- 3.3 Selected Examples.- 3.3.1 Structure of the Si{100}-(2x1)H System.- 3.3.2 H-saturated Si{100} and Ge{100} Surfaces.- 3.3.3 Dynamics of H on Si{100}.- 3.3.4 H2O on Si{100}.- 3.3.5 Electronic Absorption of Si{100} and Si{111}.- a) Si{100}.- b) Si{111}.- 3.3.6 Chemistry at Semiconductor Surfaces.- 3.4 Problems and Future Directions.- 3.5 Conclusions.- References.- 4. Surface Phonons - Theory.- 4.1 Discoveries and Advances.- 4.1.1 Advances in Experimental Studies of Surface Phonons.- 4.1.2 New Computational Methods.- A) Clean Surfaces.- a) Spectral Densities.- b) Surface Phonons and Resonances.- c) Anharmonic Effects.- d) First Principles Calculations of Surface Phonon Dispersion Curves.- B) Adsorbate Covered Surfaces.- a) A Single Adparticle.- b) A Periodic Array of Adatoms.- 4.2 Surface Phonons on Complex Crystals and Structures.- 4.2.1 Surface Phonon Anomalies Caused by the Electron-Phonon Interaction.- 4.2.2 Surface Phonon Kohn Anomalies.- 4.2.3 Molecular Crystals.- 4.2.4 Crystal Surfaces with High Miller Indices.- 4.2.5 Reconstructed Surfaces.- 4.2.6 Amorphous Media.- 4.2.7 An Incommensurate Array of Adatoms.- 4.3 Some Directions for Future Research.- References.- 5. Interpretation of the NEXAFS Spectra of Adsorbates Using Multiple Scattering Calculations.- 5.1 Multiple Scattering Calculations of Near Edge Spectra of Molecules.- 5.2 Atomic and Diatomic Adsorbates.- 5.3 Computational Method for Complex Molecules and Clusters.- 5.4 More Complex Adsorbates.- 5.4.1 Ethylene and Ethylidyne on Pt{111}.- 5.4.2 Benzene on Pt{111}.- 5.4.3 Saturated Cyclic Hydrocarbons.- 5.4.4 Thiophene and Platinum Metallacycle.- 5.5 Conclusions.- References.- 6. Near-Edge X-Ray Absorption Fine Structure Spectroscopy: A Probe of Local Bonding for Organic Gases, Solids, Adsorbates, and Polymers.- 6.1 Development of NEXAFS: An Overview.- 6.2 Experimental Details.- 6.3 Results and Analysis.- 6.3.1 The Signatures of Individual Bonds.- 6.3.2 Assembly of Diatomics to Functional Groups.- 6.3.3 The Fingerprints of Functional Groups.- 6.3.4 Assembly of Functional Groups to Macromolecules.- 6.3.5 Limitations of the Building Block Approach.- 6.4 Conclusions and Future Prospects.- References.- 7. Surface Kinetics with Near Edge X-Ray Absorption Fine Structure.- 7.1 An Overview of Methods for Characterizing Surface Reactions.- 7.2 Transient Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a Probe of Surface Reactions.- 7.2.1 Soft X-ray Absorption Using Electron Detection.- 7.2.2 CO Desorption from the Pt{111} Surface.- 7.2.3 Pyridine Reorientation of the Ag{111} Surface.- 7.2.4 Ethylene Conversion to Ethylidyne on the Pt{111} Surface.- 7.2.5 Summary: Transient NEXAFS Using Electron Detection.- 7.3 Fluorescence Yield Near-Edge Structure (FYNES).- in the Soft X-ray Region.- 7.3.1 Apparatus.- 7.3.2 Summary: Soft X-ray Absorption Using Fluorescence Detection.- 7.4 Future Opportunities.- References.- 8. Overview of Electron Microscopy Studies of the So-Called "Strong Metal-Support Interaction"1. Activated Chemisorption.- 1.1 A Brief History.- 1.2 Classification of Activated Chemisorption.- 1.2.1 Molecular Structure.- 1.2.2 Electronic Structure of the Gas.- 1.2.3 Electronic Structure of the Solid.- 1.2.4 Atomic Arrangement of the Solid.- 1.2.5 Strength of Chemisorption Bonding.- 1.2.6 Surprises.- 1.3 Formal Kinetics.- 1.3.1 Concentration Dependence of Chemisorption Rates.- 1.3.2 Temperature Dependencies.- 1.3.3 Angular and Mass Dependence.- 1.4 Case Studies in Activated Adsorption.- 1.4.1 Methane and Other Alkanes on Metal Surfaces.- 1.4.2 Hydrogen on Copper.- 1.4.3 Hydrogen on Elemental Semiconductors.- 1.4.4 Activated Adsorption on Densely Packed Planes.- a) Hydrogen and Nitrogen on W{110}, Re{0001}, and Ru{0001}.- b) Hydrogen on Platinum {111}.- c) Hydrogen on Nickel {111} and {110}.- 1.4.5 Slow Chemisorption of Nitrogen.- a) Nitrogen on Platinum Group Metals.- b) Chemisorption of Nitrogen on Iron.- 1.4.6 A Surprise: Oxygen on W{110}.- 1.5 Summary.- References.- 2. Physisorbed Rare Gas Adlayers.- 2.1 Experimental Techniques.- 2.1.1 General Remarks.- 2.1.2 Probe Particles.- a) Electrons.- b) Neutrons.- c) X-Ray Photons.- d) Helium Atoms.- 2.2 Solid-Solid Transitions in Two Dimensions.- 2.2.1 Commensurability.- 2.2.2 Fundamentals of the Theory Describing the Commensurate-Incommensurate Transition in 2D.- 2.2.3 The C-I Transition of Monolayer Xe on Pt{111}.- 2.2.4 Can High Order Commensurate Adlayers be Distinguished from Incommensurate Ones?.- i) Thermal expansion.- ii) Commensurate buckling.- iii) Lattice dynamical criterion.- iv) Bragg peak singularities.- 2.2.5 The I-HOC Phase Transition of Monolayer Kr on Pt{111}.- 2.2.6 Rotational Epitaxy of Monolayers.- 2.3 Multilayer Growth of Rare Gases.- 2.3.1 Dynamical Coupling Between Adlayer and Substrate.- 2.3.2 Layer-by-Layer Evolution of the Lattice Dynamics.- 2.3.3 Growth Mode and the Scale of Substrate Strength.- 2.3.4 Epitaxial Layer Growth of Xe on Pt{111}.- 2.4 Conclusion.- References.- 3. Infrared Spectroscopy of Semiconductor Surfaces.- 3.1 Theoretical Framework.- 3.1.1 Macroscopic Theory (Three-Layer Model).- 3.1.2 Microscopic Model of the Active Layer.- 3.1.3 Model for Electronic Absorption.- 3.1.4 Discussion of the Assumption of Sharp Boundaries.- 3.1.5 First-Principle Calculations.- 3.2. Experimental Geometries and Techniques.- 3.2.1 Vibrational Modes in Substrate Optical Gap.- 3.2.2 Vibrational Modes in Substrate Absorption Region.- 3.2.3 Experimental Apparatus.- a) Surface Infrared Spectrometer.- b) Sample Geometry.- c) Other Techniques.- 3.3 Selected Examples.- 3.3.1 Structure of the Si{100}-(2x1)H System.- 3.3.2 H-saturated Si{100} and Ge{100} Surfaces.- 3.3.3 Dynamics of H on Si{100}.- 3.3.4 H2O on Si{100}.- 3.3.5 Electronic Absorption of Si{100} and Si{111}.- a) Si{100}.- b) Si{111}.- 3.3.6 Chemistry at Semiconductor Surfaces.- 3.4 Problems and Future Directions.- 3.5 Conclusions.- References.- 4. Surface Phonons - Theory.- 4.1 Discoveries and Advances.- 4.1.1 Advances in Experimental Studies of Surface Phonons.- 4.1.2 New Computational Methods.- A) Clean Surfaces.- a) Spectral Densities.- b) Surface Phonons and Resonances.- c) Anharmonic Effects.- d) First Principles Calculations of Surface Phonon Dispersion Curves.- B) Adsorbate Covered Surfaces.- a) A Single Adparticle.- b) A Periodic Array of Adatoms.- 4.2 Surface Phonons on Complex Crystals and Structures.- 4.2.1 Surface Phonon Anomalies Caused by the Electron-Phonon Interaction.- 4.2.2 Surface Phonon Kohn Anomalies.- 4.2.3 Molecular Crystals.- 4.2.4 Crystal Surfaces with High Miller Indices.- 4.2.5 Reconstructed Surfaces.- 4.2.6 Amorphous Media.- 4.2.7 An Incommensurate Array of Adatoms.- 4.3 Some Directions for Future Research.- References.- 5. Interpretation of the NEXAFS Spectra of Adsorbates Using Multiple Scattering Calculations.- 5.1 Multiple Scattering Calculations of Near Edge Spectra of Molecules.- 5.2 Atomic and Diatomic Adsorbates.- 5.3 Computational Method for Complex Molecules and Clusters.- 5.4 More Complex Adsorbates.- 5.4.1 Ethylene and Ethylidyne on Pt{111}.- 5.4.2 Benzene on Pt{111}.- 5.4.3 Saturated Cyclic Hydrocarbons.- 5.4.4 Thiophene and Platinum Metallacycle.- 5.5 Conclusions.- References.- 6. Near-Edge X-Ray Absorption Fine Structure Spectroscopy: A Probe of Local Bonding for Organic Gases, Solids, Adsorbates, and Polymers.- 6.1 Development of NEXAFS: An Overview.- 6.2 Experimental Details.- 6.3 Results and Analysis.- 6.3.1 The Signatures of Individual Bonds.- 6.3.2 Assembly of Diatomics to Functional Groups.- 6.3.3 The Fingerprints of Functional Groups.- 6.3.4 Assembly of Functional Groups to Macromolecules.- 6.3.5 Limitations of the Building Block Approach.- 6.4 Conclusions and Future Prospects.- References.- 7. Surface Kinetics with Near Edge X-Ray Absorption Fine Structure.- 7.1 An Overview of Methods for Characterizing Surface Reactions.- 7.2 Transient Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a Probe of Surface Reactions.- 7.2.1 Soft X-ray Absorption Using Electron Detection.- 7.2.2 CO Desorption from the Pt{111} Surface.- 7.2.3 Pyridine Reorientation of the Ag{111} Surface.- 7.2.4 Ethylene Conversion to Ethylidyne on the Pt{111} Surface.- 7.2.5 Summary: Transient NEXAFS Using Electron Detection.- 7.3 Fluorescence Yield Near-Edge Structure (FYNES).- in the Soft X-ray Region.- 7.3.1 Apparatus.- 7.3.2 Summary: Soft X-ray Absorption Using Fluorescence Detection.- 7.4 Future Opportunities.- References.- 8. Overview of Electron Microscopy Studies of the So-Called "Strong Metal-Support Interaction" (SMSI).- 8.1 Experimental.- 8.2 Results and Discussion.- 8.3 Summary.- References.- 9. Theory of Desorption Kinetics.- 9.1 Nonequilibrium Thermodynamics of a Two-Phase Adsorbate.- 9.1.1 Preliminary Comments.- 9.1.2 General Formulation.- a) Adsorption.- b) Desorption.- c) Two-Dimensional Condensation and Evaporation.- d) Equilibration of the 2D Gas Phases.- e) Equilibrium Properties.- 9.1.3 Results.- 9.1.4 A Simplified Model.- 9.2 Microscopic Approaches.- 9.3. Outlook.- References.- 10. Fractals in Surface Science: Scattering and Thermodynamics of Adsorbed Films.- 10.1 Fundamentals of Fractal Geometry.- 10.1.1 Definition 1.- 10.1.2 Definition 2.- 10.2 Small-Angle Scattering from Fractal Surfaces.- 10.2.1 Theorem 1.- 10.2.2 Theorem 2.- 10.2.3 Theorem 3.- 10.3 Application: Small-Angle He Scattering from Adsorbate Islands on an Ordered Surface.- 10.4 Scattering from a Diffusing Adsorbate on a Fractal Surface.- 10.5 Henry's Law of Adsorption on a Fractal Surface.- 10.6 BET Condensation of a Gas on a Fractal Surface.- 10.7 Bose-Einstein Condensation in Nonintegral Dimensions.- 10.8 Conclusion.- References.- 11. Critical Phenomena of Chemisorbed Atoms and Reconstruction - Revisited.- 11.1 Brief Recap.- 11.2 Results from Computed Structure Factors.- 11.2.1 General Features.- 11.2.2 Diffraction-Limit Results.- 11.2.3 Energy-Like Limit.- 11.2.4 Melting to an Incommensurate Disordered Phase.- 11.2.5 Critical Behavior at Temperature-Driven First-Order Transitions.- 11.2.6 Effects of Defects.- 11.3 Experimental Progress Since ISISS-1981.- 11.3.1 4-State Potts Systems: O/Ru{0001}.- 11.3.2 Ising Systems.- 11.3.3 XY with Cubic Anisotropy.- 11.3.4 Se/Ni{100}: Realization of the Ashkin-Teller Model?.- 11.4 Conclusions.- References.- 12. Surface Electronic Interactions of Slow Ions and Metastable Atoms.- 12.1 Electron Ejection by Auger Neutralization (AN) and Auger De-excitation (AD).- 12.2 Resonance Tunneling Makes Two-Stage Processes Possible.- 12.3 Matrix Elements, Transition Rates, and Related Probability Functions.- 12.4 Variation of Atomic Energy Levels Near a Solid Surface.- 12.5 Excitation Conversion of He*(1S) to He*(3S).- 12.6 What Determines the Ultimate Mode of Electron Ejection?.- 12.7 A Selective Listing of Investigations with Some Comments.- 12.8 Summary.- References.- 13. Equilibrium Crystal Shapes and Interfacial Phase Transitions.- 13.1 Introduction.- 13.2 The Crystal Shape as a Free Energy.- 13.3 The Wulff Construction as Legendre Transformation.- 13.4 Applications.- 13.4.1 Facets, Cusps, and Roughening.- 13.4.2 Sharp Edges, Thermal Faceting, and Forbidden Regions of the Wulff Plot.- 13.4.3 T=0 Roughening and the Degeneracy of Corners and Edges.- 13.4.4 The Statistical Mechanics of Crystal Shapes.- 13.4.5 Critical Behavior of the Equilibrium Crystal Shape.- 13.4.6 Calculating the Shapes of Real Crystals.- 13.5 Open Questions.- References.- 14. Experimental Aspects of Surface Roughening.- 14.1 Equilibrium Crystal Shapes and Surface Roughening.- 14.2 The Detection of Steps on Surfaces.- 14.3 Energetics of Step Formation and Surface Diffusion.- 14.4 Diffraction Studies of the Roughening Transition.- 14.5 The Dependence of TR on Crystal Orientation.- 14.6 Conclusions.- References.- 15. Relationship Between Anisotropy of Specific Surface Free Energy and Surface Reconstruction.- 15.1 Introduction.- 15.2 Anisotropics of Specific Surface Free Energy, ?(?).- 15.2.1 Experiment.- 15.2.2 Theory.- 15.3 Reconstruction of Pt{110} - Surface Self-Diffusion Measurements.- 15.4 Surface-Atom Core Level Shifts of Pt.- 15.5 Adsorbate-Induced Reconstruction.- 15.6 Reconstruction and Faceting -s Law of Adsorption on a Fractal Surface.- 10.6 BET Condensation of a Gas on a Fractal Surface.- 10.7 Bose-Einstein Condensation in Nonintegral Dimensions.- 10.8 Conclusion.- References.- 11. Critical Phenomena of Chemisorbed Atoms and Reconstruction - Revisited.- 11.1 Brief Recap.- 11.2 Results from Computed Structure Factors.- 11.2.1 General Features.- 11.2.2 Diffraction-Limit Results.- 11.2.3 Energy-Like Limit.- 11.2.4 Melting to an Incommensurate Disordered Phase.- 11.2.5 Critical Behavior at Temperature-Driven First-Order Transitions.- 11.2.6 Effects of Defects.- 11.3 Experimental Progress Since ISISS-1981.- 11.3.1 4-State Potts Systems: O/Ru{0001}.- 11.3.2 Ising Systems.- 11.3.3 XY with Cubic Anisotropy.- 11.3.4 Se/Ni{100}: Realization of the Ashkin-Teller Model?.- 11.4 Conclusions.- References.- 12. Surface Electronic Interactions of Slow Ions and Metastable Atoms.- 12.1 Electron Ejection by Auger Neutralization (AN) and Auger De-excitation (AD).- 12.2 Resonance Tunneling Makes Two-Stage Processes Possible.- 12.3 Matrix Elements, Transition Rates, and Related Probability Functions.- 12.4 Variation of Atomic Energy Levels Near a Solid Surface.- 12.5 Excitation Conversion of He*(1S) to He*(3S).- 12.6 What Determines the Ultimate Mode of Electron Ejection?.- 12.7 A Selective Listing of Investigations with Some Comments.- 12.8 Summary.- References.- 13. Equilibrium Crystal Shapes and Interfacial Phase Transitions.- 13.1 Introduction.- 13.2 The Crystal Shape as a Free Energy.- 13.3 The Wulff Construction as Legendre Transformation.- 13.4 Applications.- 13.4.1 Facets, Cusps, and Roughening.- 13.4.2 Sharp Edges, Thermal Faceting, and Forbidden Regions of the Wulff Plot.- 13.4.3 T=0 Roughening and the Degeneracy of Corners and Edges.- 13.4.4 The Statistical Mechanics of Crystal Shapes.- 13.4.5 Critical Behavior of the Equilibrium Crystal Shape.- 13.4.6 Calculating the Shapes of Real Crystals.- 13.5 Open Questions.- References.- 14. Experimental Aspects of Surface Roughening.- 14.1 Equilibrium Crystal Shapes and Surface Roughening.- 14.2 The Detection of Steps on Surfaces.- 14.3 Energetics of Step Formation and Surface Diffusion.- 14.4 Diffraction Studies of the Roughening Transition.- 14.5 The Dependence of TR on Crystal Orientation.- 14.6 Conclusions.- References.- 15. Relationship Between Anisotropy of Specific Surface Free Energy and Surface Reconstruction.- 15.1 Introduction.- 15.2 Anisotropics of Specific Surface Free Energy, ?(?).- 15.2.1 Experiment.- 15.2.2 Theory.- 15.3 Reconstruction of Pt{110} - Surface Self-Diffusion Measurements.- 15.4 Surface-Atom Core Level Shifts of Pt.- 15.5 Adsorbate-Induced Reconstruction.- 15.6 Reconstruction and Faceting -1. Activated Chemisorption.- 1.1 A Brief History.- 1.2 Classification of Activated Chemisorption.- 1.2.1 Molecular Structure.- 1.2.2 Electronic Structure of the Gas.- 1.2.3 Electronic Structure of the Solid.- 1.2.4 Atomic Arrangement of the Solid.- 1.2.5 Strength of Chemisorption Bonding.- 1.2.6 Surprises.- 1.3 Formal Kinetics.- 1.3.1 Concentration Dependence of Chemisorption Rates.- 1.3.2 Temperature Dependencies.- 1.3.3 Angular and Mass Dependence.- 1.4 Case Studies in Activated Adsorption.- 1.4.1 Methane and Other Alkanes on Metal Surfaces.- 1.4.2 Hydrogen on Copper.- 1.4.3 Hydrogen on Elemental Semiconductors.- 1.4.4 Activated Adsorption on Densely Packed Planes.- a) Hydrogen and Nitrogen on W{110}, Re{0001}, and Ru{0001}.- b) Hydrogen on Platinum {111}.- c) Hydrogen on Nickel {111} and {110}.- 1.4.5 Slow Chemisorption of Nitrogen.- a) Nitrogen on Platinum Group Metals.- b) Chemisorption of Nitrogen on Iron.- 1.4.6 A Surprise: Oxygen on W{110}.- 1.5 Summary.- References.- 2. Physisorbed Rare Gas Adlayers.- 2.1 Experimental Techniques.- 2.1.1 General Remarks.- 2.1.2 Probe Particles.- a) Electrons.- b) Neutrons.- c) X-Ray Photons.- d) Helium Atoms.- 2.2 Solid-Solid Transitions in Two Dimensions.- 2.2.1 Commensurability.- 2.2.2 Fundamentals of the Theory Describing the Commensurate-Incommensurate Transition in 2D.- 2.2.3 The C-I Transition of Monolayer Xe on Pt{111}.- 2.2.4 Can High Order Commensurate Adlayers be Distinguished from Incommensurate Ones?.- i) Thermal expansion.- ii) Commensurate buckling.- iii) Lattice dynamical criterion.- iv) Bragg peak singularities.- 2.2.5 The I-HOC Phase Transition of Monolayer Kr on Pt{111}.- 2.2.6 Rotational Epitaxy of Monolayers.- 2.3 Multilayer Growth of Rare Gases.- 2.3.1 Dynamical Coupling Between Adlayer and Substrate.- 2.3.2 Layer-by-Layer Evolution of the Lattice Dynamics.- 2.3.3 Growth Mode and the Scale of Substrate Strength.- 2.3.4 Epitaxial Layer Growth of Xe on Pt{111}.- 2.4 Conclusion.- References.- 3. Infrared Spectroscopy of Semiconductor Surfaces.- 3.1 Theoretical Framework.- 3.1.1 Macroscopic Theory (Three-Layer Model).- 3.1.2 Microscopic Model of the Active Layer.- 3.1.3 Model for Electronic Absorption.- 3.1.4 Discussion of the Assumption of Sharp Boundaries.- 3.1.5 First-Principle Calculations.- 3.2. Experimental Geometries and Techniques.- 3.2.1 Vibrational Modes in Substrate Optical Gap.- 3.2.2 Vibrational Modes in Substrate Absorption Region.- 3.2.3 Experimental Apparatus.- a) Surface Infrared Spectrometer.- b) Sample Geometry.- c) Other Techniques.- 3.3 Selected Examples.- 3.3.1 Structure of the Si{100}-(2x1)H System.- 3.3.2 H-saturated Si{100} and Ge{100} Surfaces.- 3.3.3 Dynamics of H on Si{100}.- 3.3.4 H2O on Si{100}.- 3.3.5 Electronic Absorption of Si{100} and Si{111}.- a) Si{100}.- b) Si{111}.- 3.3.6 Chemistry at Semiconductor Surfaces.- 3.4 Problems and Future Directions.- 3.5 Conclusions.- References.- 4. Surface Phonons - Theory.- 4.1 Discoveries and Advances.- 4.1.1 Advances in Experimental Studies of Surface Phonons.- 4.1.2 New Computational Methods.- A) Clean Surfaces.- a) Spectral Densities.- b) Surface Phonons and Resonances.- c) Anharmonic Effects.- d) First Principles Calculations of Surface Phonon Dispersion Curves.- B) Adsorbate Covered Surfaces.- a) A Single Adparticle.- b) A Periodic Array of Adatoms.- 4.2 Surface Phonons on Complex Crystals and Structures.- 4.2.1 Surface Phonon Anomalies Caused by the Electron-Phonon Interaction.- 4.2.2 Surface Phonon Kohn Anomalies.- 4.2.3 Molecular Crystals.- 4.2.4 Crystal Surfaces with High Miller Indices.- 4.2.5 Reconstructed Surfaces.- 4.2.6 Amorphous Media.- 4.2.7 An Incommensurate Array of Adatoms.- 4.3 Some Directions for Future Research.- References.- 5. Interpretation of the NEXAFS Spectra of Adsorbates Using Multiple Scattering Calculations.- 5.1 Multiple Scattering Calculations of Near Edge Spectra of Molecules.- 5.2 Atomic and Diatomic Adsorbates.- 5.3 Computational Method for Complex Molecules and Clusters.- 5.4 More Complex Adsorbates.- 5.4.1 Ethylene and Ethylidyne on Pt{111}.- 5.4.2 Benzene on Pt{111}.- 5.4.3 Saturated Cyclic Hydrocarbons.- 5.4.4 Thiophene and Platinum Metallacycle.- 5.5 Conclusions.- References.- 6. Near-Edge X-Ray Absorption Fine Structure Spectroscopy: A Probe of Local Bonding for Organic Gases, Solids, Adsorbates, and Polymers.- 6.1 Development of NEXAFS: An Overview.- 6.2 Experimental Details.- 6.3 Results and Analysis.- 6.3.1 The Signatures of Individual Bonds.- 6.3.2 Assembly of Diatomics to Functional Groups.- 6.3.3 The Fingerprints of Functional Groups.- 6.3.4 Assembly of Functional Groups to Macromolecules.- 6.3.5 Limitations of the Building Block Approach.- 6.4 Conclusions and Future Prospects.- References.- 7. Surface Kinetics with Near Edge X-Ray Absorption Fine Structure.- 7.1 An Overview of Methods for Characterizing Surface Reactions.- 7.2 Transient Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a Probe of Surface Reactions.- 7.2.1 Soft X-ray Absorption Using Electron Detection.- 7.2.2 CO Desorption from the Pt{111} Surface.- 7.2.3 Pyridine Reorientation of the Ag{111} Surface.- 7.2.4 Ethylene Conversion to Ethylidyne on the Pt{111} Surface.- 7.2.5 Summary: Transient NEXAFS Using Electron Detection.- 7.3 Fluorescence Yield Near-Edge Structure (FYNES).- in the Soft X-ray Region.- 7.3.1 Apparatus.- 7.3.2 Summary: Soft X-ray Absorption Using Fluorescence Detection.- 7.4 Future Opportunities.- References.- 8. Overview of Electron Microscopy Studies of the So-Called "Strong Metal-Support Interaction" (SMSI).- 8.1 Experimental.- 8.2 Results and Discussion.- 8.3 Summary.- References.- 9. Theory of Desorption Kinetics.- 9.1 Nonequilibrium Thermodynamics of a Two-Phase Adsorbate.- 9.1.1 Preliminary Comments.- 9.1.2 General Formulation.- a) Adsorption.- b) Desorption.- c) Two-Dimensional Condensation and Evaporation.- d) Equilibration of the 2D Gas Phases.- e) Equilibrium Properties.- 9.1.3 Results.- 9.1.4 A Simplified Model.- 9.2 Microscopic Approaches.- 9.3. Outlook.- References.- 10. Fractals in Surface Science: Scattering and Thermodynamics of Adsorbed Films.- 10.1 Fundamentals of Fractal Geometry.- 10.1.1 Definition 1.- 10.1.2 Definition 2.- 10.2 Small-Angle Scattering from Fractal Surfaces.- 10.2.1 Theorem 1.- 10.2.2 Theorem 2.- 10.2.3 Theorem 3.- 10.3 Application: Small-Angle He Scattering from Adsorbate Islands on an Ordered Surface.- 10.4 Scattering from a Diffusing Adsorbate on a Fractal Surface.- 10.5 Henry's Law of Adsorption on a Fractal Surface.- 10.6 BET Condensation of a Gas on a Fractal Surface.- 10.7 Bose-Einstein Condensation in Nonintegral Dimensions.- 10.8 Conclusion.- References.- 11. Critical Phenomena of Chemisorbed Atoms and Reconstruction - Revisited.- 11.1 Brief Recap.- 11.2 Results from Computed Structure Factors.- 11.2.1 General Features.- 11.2.2 Diffraction-Limit Results.- 11.2.3 Energy-Like Limit.- 11.2.4 Melting to an Incommensurate Disordered Phase.- 11.2.5 Critical Behavior at Temperature-Driven First-Order Transitions.- 11.2.6 Effects of Defects.- 11.3 Experimental Progress Since ISISS-1981.- 11.3.1 4-State Potts Systems: O/Ru{0001}.- 11.3.2 Ising Systems.- 11.3.3 XY with Cubic Anisotropy.- 11.3.4 Se/Ni{100}: Realization of the Ashkin-Teller Model?.- 11.4 Conclusions.- References.- 12. Surface Electronic Interactions of Slow Ions and Metastable Atoms.- 12.1 Electron Ejection by Auger Neutralization (AN) and Auger De-excitation (AD).- 12.2 Resonance Tunneling Makes Two-Stage Processes Possible.- 12.3 Matrix Elements, Transition Rates, and Related Probability Functions.- 12.4 Variation of Atomic Energy Levels Near a Solid Surface.- 12.5 Excitation Conversion of He*(1S) to He*(3S).- 12.6 What Determines the Ultimate Mode of Electron Ejection?.- 12.7 A Selective Listing of Investigations with Some Comments.- 12.8 Summary.- References.- 13. Equilibrium Crystal Shapes and Interfacial Phase Transitions.- 13.1 Introduction.- 13.2 The Crystal Shape as a Free Energy.- 13.3 The Wulff Construction as Legendre Transformation.- 13.4 Applications.- 13.4.1 Facets, Cusps, and Roughening.- 13.4.2 Sharp Edges, Thermal Faceting, and Forbidden Regions of the Wulff Plot.- 13.4.3 T=0 Roughening and the Degeneracy of Corners and Edges.- 13.4.4 The Statistical Mechanics of Crystal Shapes.- 13.4.5 Critical Behavior of the Equilibrium Crystal Shape.- 13.4.6 Calculating the Shapes of Real Crystals.- 13.5 Open Questions.- References.- 14. Experimental Aspects of Surface Roughening.- 14.1 Equilibrium Crystal Shapes and Surface Roughening.- 14.2 The Detection of Steps on Surfaces.- 14.3 Energetics of Step Formation and Surface Diffusion.- 14.4 Diffraction Studies of the Roughening Transition.- 14.5 The Dependence of TR on Crystal Orientation.- 14.6 Conclusions.- References.- 15. Relationship Between Anisotropy of Specific Surface Free Energy and Surface Reconstruction.- 15.1 Introduction.- 15.2 Anisotropics of Specific Surface Free Energy, ?(?).- 15.2.1 Experiment.- 15.2.2 Theory.- 15.3 Reconstruction of Pt{110} - Surface Self-Diffusion Measurements.- 15.4 Surface-Atom Core Level Shifts of Pt.- 15.5 Adsorbate-Induced Reconstruction.- 15.6 Reconstruction and Faceting - a Comparison.- References.- 16. Surface Melting.- 16.1 Melting and the Role of the Surface.- 16.2 Thermodynamics of Surface Melting.- 16.2.1 Driving Force.- 16.2.2 Which Surfaces Do Melt?.- 16.2.3 Crystal-Face Dependence of Surface Melting.- 16.2.4 Molecular Dynamics Simulations and Phenomenological Theories.- 16.3 Observations of Surface Melting.- 16.3.1 Calorimetry.- 16.3.2 Optical Measurements.- 16.3.3 Rutherford Backscattering of Ions.- a) Shadowing and Blocking.- b) Backscattering from a Melted Surface.- c) Melting of Pb{110}.- d) Melting or Non-Melting of Pb{hkl}.- 16.3.4 Diffraction.- 16.3.5 Neutron and He Scattering.- 16.4 Summary and Outlook.- References.- 17. The Surface of Solid Helium.- 17.1 Review of the Properties of Helium-4.- 17.2 Growth of Solid Helium-4.- 17.2.1 Melting-Freezing Waves.- 17.2.2 Boundary Conditions at a Moving Interface.- 17.2.3 Kapitza Resistance.- 17.2.4 Growth Coefficient.- 17.2.5 High Velocity Growth.- 17.3 Facets and Facetting Transitions.- 17.3.1 Roughening Temperatures.- 17.3.2 Theoretical Situation.- 17.3.3 Experimental Results Near Roughening Transitions.- 17.4 Helium-3.- 17.5 Summary.- References.- 18. Solving Complex and Disordered Surface Structures with Electron Diffraction.- 18.1 Introduction.- 18.1.1 The Past.- 18.1.2 The Objective.- 18.2 Towards Diffraction from Complex and Disordered Surfaces.- 18.2.1 The Problem.- 18.2.2 Basic LEED Methods.- 18.2.3 Theoretical Solutions.- a) Cluster Methods.- b) Reducing Multiple-Scattering Paths.- c) Kinematic Sublayer Addition.- d) Forward Focusing.- e) Beam Set Neglect.- f) Tensor LEED.- g) Combinations.- 18.3 Order vs Disorder and Diffraction.- 18.4 Cluster-Oriented Approaches.- 18.4.1 Kinematic Cluster Addition.- 18.4.2 Near-Field Expansion in Clusters.- 18.5 Beam-Oriented Approaches.- 18.5.1 Plane Waves Despite Large Unit Cells and Disorder.- 18.5.2 Beam Set Neglect.- a) Two Important Beam Sets.- b) Accuracy of Beam Set Neglect.- c) Surface Reconstruction.- d) Disorder.- e) Incommensurate Overlayers.- f) Combination with Other Methods.- g) Advantages and Disadvantages of BSN.- 18.5.3 Kinematic Sublayer Addition.- 18.6 Experimental Requirements.- 18.7 Conclusions.- References.- 19. Recent Developments in Scanning Tunneling Microscopy and Related Techniques.- 19.1 Scanning Tunneling Microscopy.- 19.1.1 Study of Surface Atomic and Electronic Structure.- 19.1.2 Other Applications of STM.- 19.2 The Atomic Force Microscope.- 19.3 Related Microscopies.- References.- 20. Growth Kinetics of Silicon Molecular Beam Epitaxy.- 20.1 Two Dimensional Growth of the Matrix.- 20.1.1 Vertical Growth by Lateral Motion of Surface Steps.- 20.1.2 Burton-Cabrera-Frank (BCF) Theory.- 20.1.3 LEED/RHEED Oscillations.- 20.2 Impurity Incorporation into Si-MBE Layers.- 20.2.1 Secondary Implantation.- 20.3 Limits of the Two-Dimensional (2D) Growth Mode.- 20.3.1 Surface Contamination.- 20.3.2 Heteroepitaxy.- 20.3.3 The SiGe/Si System.- 20.4 Conclusion.- References.
Volume

8 : gw ISBN 9783540526797

Description

One of several volumes presenting selected review articles predominantly from the area of gas/solid interfaces. They are written by internationally recognized experts, the invited speakers of the International Summer Institute in Surface Science (ISISS). Volume VIII covers the following topics: surface reactivity - activation and desorption of molecules; desorption induced by electronic transitions; intra-adsorbate bond breaking , and the effect of high electric fields; metal clusters and atoms in zeolites; chaos in surface dynamics; surface characterization by STM (theory and application), LEEM, PAX, TOF-SARCH, SEMN with polarization analysis, and by low energy positron diffraction. The purpose of the volumes is to bring researchers in academia and industry up to date and to bridge the gap between conventional surface science textbooks and specialized conference proceedings. Extensive literature references are provided together with a detailed subject index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top