Desingularization strategies for three-dimensional vector fields

Bibliographic Information

Desingularization strategies for three-dimensional vector fields

Felipe Cano Torres

(Lecture notes in mathematics, 1259)

Springer-Verlag, c1987

  • : gw
  • : us

Available at  / 65 libraries

Search this Book/Journal

Note

Includes bibliography and index

Description and Table of Contents

Description

For a vector field #3, where Ai are series in X, the algebraic multiplicity measures the singularity at the origin. In this research monograph several strategies are given to make the algebraic multiplicity of a three-dimensional vector field decrease, by means of permissible blowing-ups of the ambient space, i.e. transformations of the type xi=x'ix1, 2"/I>i"/I>s, xi=x'i, i>s. A logarithmic point of view is taken, marking the exceptional divisor of each blowing-up and by considering only the vector fields which are tangent to this divisor, instead of the whole tangent sheaf. The first part of the book is devoted to the logarithmic background and to the permissible blowing-ups. The main part corresponds to the control of the algorithms for the desingularization strategies by means of numerical invariants inspired by Hironaka's characteristic polygon. Only basic knowledge of local algebra and algebraic geometry is assumed of the reader. The pathologies we find in the reduction of vector fields are analogous to pathologies in the problem of reduction of singularities in characteristic p. Hence the book is potentially interesting both in the context of resolution of singularities and in that of vector fields and dynamical systems.

Table of Contents

Resolution statements for a vector field.- A partial winning strategy.- Standard transitions from type I.- A winning strategy for type one.- Types two and three.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top