Orthogonality and spacetime geometry
著者
書誌事項
Orthogonality and spacetime geometry
(Universitext)
Springer-Verlag, c1987
- : us
- : gw
大学図書館所蔵 件 / 全48件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"With 126 illustrations"
Bibliography: p. [183]-185
Includes index
内容説明・目次
- 巻冊次
-
: us ISBN 9780387965192
内容説明
This book examines the geometrical notion of orthogonality, and shows how to use it as the primitive concept on which to base a metric structure in affine geometry. The subject has a long history, and an extensive literature, but whatever novelty there may be in the study presented here comes from its focus on geometries hav ing lines that are self-orthogonal, or even singular (orthogonal to all lines). The most significant examples concern four-dimensional special-relativistic spacetime (Minkowskian geometry), and its var ious sub-geometries, and these will be prominent throughout. But the project is intended as an exercise in the foundations of geome try that does not presume a knowledge of physics, and so, in order to provide the appropriate intuitive background, an initial chapter has been included that gives a description of the different types of line (timelike, spacelike, lightlike) that occur in spacetime, and the physical meaning of the orthogonality relations that hold between them. The coordinatisation of affine spaces makes use of constructions from projective geometry, including standard results about the ma trix represent ability of certain projective transformations (involu tions, polarities). I have tried to make the work sufficiently self contained that it may be used as the basis for a course at the ad vanced undergraduate level, assuming only an elementary knowledge of linear and abstract algebra.
目次
1 A Trip On Einstein's Train.- 2 Planes.- 2.1 Affine Planes and Fields.- 2.2 Metric Vector Spaces.- 2.3 Metric Planes.- 2.4 The Singular Plane.- 2.5 The Artinian Plane.- 2.6 Constants of Orthogonality.- 2.7 The Three Real Metric Planes.- 3 Projective Transformations.- 3.1 Projective Planes.- 3.2 Projectivities and Involutions.- 3.3 Matrix-Induced Projectivities.- 3.4 Projective Collineations.- 3.5 Correlations and Polarities.- 4 Threefolds.- 4.1 Affine Spaces.- 4.2 Metric Affine Spaces.- 4.3 Singular Threefolds.- 4.4 Nonsingular Threefolds.- 5 Fourfolds.- 5.1 Artinian Four-Space.- 5.2 Affine Fourfolds and Projective Three-Space.- 5.3 Nonsingular Fourfolds.- 5.4 The Three Real Fourfolds.- Appendix A Metageometry.
- 巻冊次
-
: gw ISBN 9783540965190
内容説明
This book examines the geometrical notion of orthogonality, and shows how to use it as the primitive concept on which to base a metric structure in affine geometry. The subject has a long history, and an extensive literature, but whatever novelty there may be in the study presented here comes from its focus on geometries hav- ing lines that are self-orthogonal, or even singular (orthogonal to all lines). The most significant examples concern four-dimensional special-relativistic spacetime (Minkowskian geometry), and its var- ious sub-geometries, and these will be prominent throughout. But the project is intended as an exercise in the foundations of geome- try that does not presume a knowledge of physics, and so, in order to provide the appropriate intuitive background, an initial chapter has been included that gives a description of the different types of line (timelike, spacelike, lightlike) that occur in spacetime, and the physical meaning of the orthogonality relations that hold between them.The coordinatisation of affine spaces makes use of constructions from projective geometry, including standard results about the ma- trix represent ability of certain projective transformations (involu- tions, polarities). I have tried to make the work sufficiently self- contained that it may be used as the basis for a course at the ad- vanced undergraduate level, assuming only an elementary knowledge of linear and abstract algebra.
「Nielsen BookData」 より