Probability measures on groups : proceedings of the sixth conference held at Oberwolfach, Germany, June 28-July 4, 1981

Bibliographic Information

Probability measures on groups : proceedings of the sixth conference held at Oberwolfach, Germany, June 28-July 4, 1981

edited by H. Heyer

(Lecture notes in mathematics, 928)

Springer-Verlag, 1982

  • : Berlin
  • : New York

Available at  / 75 libraries

Search this Book/Journal

Note

Includes bibliographies

Description and Table of Contents

Table of Contents

Infinitely divisible measures on hypergroups.- Poisson measures on Banach lattices.- First elements of a theory of quantum mechanical limit distributions.- Sur le theoreme de dichotomie pour les marches aleatoires sur les espaces homogenes.- Continuous cohomology, infinitely divisible positive definite functions and continuous tensor products for SU(1, 1).- Canonical representation of the Bernoulli process.- Capacites, mouvement Brownien et problemen de l'epine de Lebesgue sur les groupes de Lie nilpotents.- Stable Banach spaces, random measures and Orlicz function spaces.- Autocorrelation, equipartition of energy, and random evolutions.- Stable probabilities on locally compact groups.- Zeitgeordnete Momente des Weissen klassischen und Des Weissen Quantenrauschens.- Some zero-one laws for semistable and self-decomposable measures on locally convex spaces.- Convolution powers of probability measures on locally compact semigroups.- Theoremes limites pour les produits de matrices aleatoires.- Local tightness of convolution semigroups over locally compact groups.- Convergence of nonhomogeneous stochastic chains with countable states: An application to measures on semigroups.- Infinite convolution and shift-convergence of measures on topological groups.- Irreducible and prime distributions.- Continuous hemigroups of probability measures on a Lie group.- Potential theory for recurrent symmetric infinitely divisible processes.- Lois de zero-un et lois semi-stables dans un groupe.- A local limit theorem for random walks on certain discrete groups.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top