The mathematics of Sonya Kovalevskaya
著者
書誌事項
The mathematics of Sonya Kovalevskaya
Springer-Verlag, c1984
大学図書館所蔵 全25件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [209]-225
Includes index
内容説明・目次
内容説明
This book is the result of a decision taken in 1980 to begin studying the history of mathematics in the nineteenth century. I hoped by doing it to learn some thing of value about Kovalevskaya herself and about the mathematical world she inhabited. Having been trained as a mathematician, I also hoped to learn something about the proper approach to the history of the subject. The decision to begin the study with Kovalevskaya, apart from the intrinsic interest of Kovalevskaya herself, was primarily based upon the fact that the writing on her in English had been done by people who were interested in sociological and psychological aspects of her life. None of these writings discussed her mathematical work in much detail. This omission seemed to me a serious one in biographical studies of a woman whose primary significance was her mathematical work. In regard to both the content of nineteenth century mathematics and the nature of the history of mathematics I learned a great deal from writing this book. The attempt to put Kovalevskaya's work in historical context involved reading dozens of significant papers by great mathematicians. In many cases, I fear, the purport of these papers is better known to many of my readers than to me. If I persevered despite misgivings, my excuse is that this book is, after all, primarily about Kovalevskaya. If specialists in Euler, Cauchy, etc.
目次
I: Childhood and Education.- 1. Biography: 1850-1874.- 1.1. Introduction.- 1.2. Kovalevskaya's Ancestors.- 1.3. Kovalevskaya's Family.- 1.4. Kovalevskaya's Uncles.- 1.5. Aniuta.- 1.6. Early Mathematical Training.- 1.7. In Search of Higher Education.- 1.8. Vladimir Kovalevsky.- 1.9. Study Abroad.- 1.10. Weierstrass.- 1.11. Kovalevskaya and Weierstrass.- 2. Partial Differential Equations.- 2.1. Introduction.- 2.2. Differential Equations in the Complex Domain.- 2.3. The Year 1842: Cauchy.- 2.4. The Year 1842: Weierstrass.- 2.5. The Problem Posed to Kovalevskaya.- 2.6. Kovalevskaya's Paper.- 2.7. Unpublished Work.- 2.8. Publishing the Result.- 2.9. Evaluation of the Work.- 3. Degenerate Abelian Integrals.- 3.1. Introduction.- 3.2. Euler.- 3.3. Legendre.- 3.4. Abel.- 3.5. Cauchy.- 3.6. Jacobi.- 3.7. Goepel and Rosenhain.- 3.8. Weierstrass' Early Work.- 3.9. Hermite.- 3.10. Riemann.- 3.11. Weierstrass' Later Work.- 3.12. Kovalevskaya's Paper.- 3.13. Evaluation.- 4. The Shape of Saturn's Rings.- 4.1. Introduction.- 4.2. Laplace's Work: Physical Assumptions.- 4.3. Laplace's Work: Mathematical Assumptions.- 4.4. The Potential of the Ring.- 4.5. Final Computations.- 4.6. Extensions.- 4.7. Reformulation of the Problem.- 4.8. Kovalevskaya's Method.- 4.9. Execution of the Program.- 4.10. Significance of the Paper.- 4.11. Personal Notes.- II: Mature Life.- 5. Biography: 1875-1891.- 5.1. Return to Russia.- 5.2. Mittag-Leffler.- 5.3. The Year 1880.- 5.4. A New Project.- 5.5. Crisis.- 5.6. The Year 1883.- 5.7. Stockholm.- 5.8. The Academic Year 1884-85.- 5.9. The Academic Year 1885-86.- 5.10. Life as an Untenured Professor.- 5.11. New Distractions.- 5.12. The Bordin Competition.- 5.13. Reactions.- 5.14. Final Days.- 6. The Lame Equations.- 6.1. Introduction.- 6.2. Huyghens.- 6.3. Fresnel.- 6.4. Lame.- 6.5. Weierstrass.- 6.6. Kovalevskaya.- 7. The Euler Equations.- 7.1. Introduction.- 7.2. Euler.- 7.3. Lagrange.- 7.4. Some Nineteenth-Century Work.- 7.5. Weierstrass.- 7.6. The Mathematical Mermaid.- 7.7. Kovalevskaya.- 7.8. Conclusions.- 7.9. Klein.- 7.10. Evaluation.- 8. Bruns' Theorem.- 8.1. Introduction.- 8.2. Kovalevskaya's Paper.- 8.3. Commentary.- 9. Evaluations.- 9.1. Introduction.- 9.2. Poincare.- 9.3. Markov.- 9.4. Kovalevskaya.- 9.5. The Moscow Mathematicians.- 9.6. Volterra.- 9.7. Women in Mathematics.- 9.8. Loria.- 9.9. Mittag-Leffler.- 9.10. Klein.- 9.11. Golubev.- 9.12. Kovalevskaya as a Mathematician.- III: Appendices and Bibliography.- Appendices.- Appendix 1. The Method of Majorants.- Appendix 2. Some Complex Analysis.- Appendix 3. Weierstrass' Formula.- Appendix 4. Derivation of Euler's Equations.- Appendix 5. Calculus of Variations.- Appendix 6. Jacobi's Last-Multiplier Method.
「Nielsen BookData」 より