Seminar on the Atiyah-Singer index theorem
Author(s)
Bibliographic Information
Seminar on the Atiyah-Singer index theorem
(Annals of mathematics studies, 57)
Princeton University Press, 1965
Available at 78 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Consists mainly of slightly revised notes of a seminar held at the Institute for Advanced Study in 1963-64."--Pref
Includes bibliographies
Description and Table of Contents
Description
The description for this book, Seminar on Atiyah-Singer Index Theorem. (AM-57), will be forthcoming.
Table of Contents
*Frontmatter, pg. i*CONTENTS, pg. v*PREFACE, pg. ix*CHAPTER I. STATEMENT OF THE THEOREM OUTLINE OF THE PROOF, pg. 1*CHAPTER II. REVIEW OF K-THEORY, pg. 13*CHAPTER III. THE TOPOLOGICAL INDEX OF AN OPERATOR ASSOCIATED TO A G-STRUCTURE, pg. 27*CHAPTER IV. DIFFERENTIAL OPERATORS ON VECTOR BUNDLES, pg. 51*CHAPTER V. ANALYTICAL INDICES OF SOME CONCRETE OPERATORS, pg. 95*CHAPTER VI. REVIEW OF FUNCTIONAL ANALYSIS, pg. 107*CHAPTER VII. FREDHDIM OPERATORS, pg. 119*CHAPTER VIII. CHAINS OP HILBERTIAN SPACES, pg. 125*CHAPTER IX. THE DISCRETE SOBOLEV CHAIN OF A VECTOR BUNDLE, pg. 147*CHAPTER X. THE CONTINUOUS SOBOLEV CHAIN OF A VECTOR BUNDLE, pg. 155*CHAPTER XI. THE SEELEY ALGEBRA, pg. 175*CHAPTER XII. HOMOTOPY INVARIANCE OF THE INDEX, pg. 185*CHAPTER XIII. WHITNEY SUMS, pg. 191*CHAPTER XIV. TENSOR PRODUCTS, pg. 197*CHAPTER XV. DEFINITION OF ia AND it ON K(M), pg. 215*CHAPTER XVI. CONSTRUCTION OF Intk, pg. 235*CHAPTER XVII. COBORDISM INVARIANCE OP THE ANALYTICAL INDEX, pg. 285*CHAPTER XVIII. BORDISM GROUPS OF BUNDLES, pg. 303*CHAPTER XIX. THE INDEX THEOREM: APPLICATIONS, pg. 313*APPENDIX I. THE INDEX THEOREM FOR MANIFOLDS WITH BOUNDARY, pg. 337*APPENDIX II. NON-STABLE CHARACTERISTIC CLASSES AND THE TOPOLOGICAL INDEX OP CLASSICAL ELLIPTIC OPERATORS, pg. 353*Backmatter, pg. 368
by "Nielsen BookData"