Perturbation theory for linear operators
著者
書誌事項
Perturbation theory for linear operators
(Die Grundlehren der mathematischen Wissenschaften, 132)
Springer-Verlag, 1984
2nd corr. print. of the 2nd ed.
大学図書館所蔵 件 / 全45件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes indexes
Bibliography: p. 583-605
内容説明・目次
内容説明
From the reviews: "[...] An excellent textbook in the theory of linear operators in Banach and Hilbert spaces. It is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory. [...] I can recommend it for any mathematician or physicist interested in this field." Zentralblatt MATH
目次
One Operator theory in finite-dimensional vector spaces.- 1. Vector spaces and normed vector spaces.- 1. Basic notions.- 2. Bases.- 3. Linear manifolds.- 4. Convergence and norms.- 5. Topological notions in a normed space.- 6. Infinite series of vectors.- 7. Vector-valued functions.- 2. Linear forms and the adjoint space.- 1. Linear forms.- 2. The adjoint space.- 3. The adjoint basis.- 4. The adjoint space of a normed space.- 5. The convexity of balls.- 6. The second adjoint space.- 3. Linear operators.- 1. Definitions. Matrix representations.- 2. Linear operations on operators.- 3. The algebra of linear operators.- 4. Projections. Nilpotents.- 5. Invariance. Decomposition.- 6. The adjoint operator.- 4. Analysis with operators.- 1. Convergence and norms for operators.- 2. The norm of Tn.- 3. Examples of norms.- 4. Infinite series of operators.- 5. Operator-valued functions.- 6. Pairs of projections.- 5. The eigenvalue problem.- 1. Definitions.- 2. The resolvent.- 3. Singularities of the resolvent.- 4. The canonical form of an operator.- 5. The adjoint problem.- 6. Functions of an operator.- 7. Similarity transformations.- 6. Operators in unitary spaces.- 1. Unitary spaces.- 2. The adjoint space.- 3. Orthonormal families.- 4. Linear operators.- 5. Symmetric forms and symmetric operators.- 6. Unitary, isometric and normal operators.- 7. Projections.- 8. Pairs of projections.- 9. The eigenvalue problem.- 10. The minimax principle.- Two Perturbation theory in a finite-dimensional space.- 1. Analytic perturbation of eigenvalues.- 1. The problem.- 2. Singularities of the eigenvalues.- 3. Perturbation of the resolvent.- 4. Perturbation of the eigenprojections.- 5. Singularities of the eigenprojections.- 6. Remarks and examples.- 7. The case of T(x) linear in x.- 8. Summary.- 2. Perturbation series.- 1. The total projection for the ?-group.- 2. The weighted mean of eigenvalues.- 3. The reduction process.- 4. Formulas for higher approximations.- 5. A theorem of Motzkin-Taussky.- 6. The ranks of the coefficients of the perturbation series.- 3. Convergence radii and error estimates.- 1. Simple estimates.- 2. The method of majorizing series.- 3. Estimates on eigenvectors.- 4. Further error estimates.- 5. The special case of a normal unperturbed operator.- 6. The enumerative method.- . Similarity transformations of the eigenspaces and eigenvectors.- 1. Eigenvectors.- 2. Transformation functions.- 3. Solution of the differential equation.- 4. The transformation function and the reduction process.- 5. Simultaneous transformation for several projections.- 6. Diagonalization of a holomorphic matrix function.- 5. Non-analytic perturbations.- 1. Continuity of the eigenvalues and the total projection.- 2. The numbering of the eigenvalues.- 3. Continuity of the eigenspaces and eigenvectors.- 4. Differentiability at a point.- 5. Differentiability in an interval.- 6. Asymptotic expansion of the eigenvalues and eigenvectors.- 7. Operators depending on several parameters.- 8. The eigenvalues as functions of the operator.- 6. Perturbation of symmetric operators.- 1. Analytic perturbation of symmetric operators.- 2. Orthonormal families of eigenvectors.- 3. Continuity and differentiability.- 4. The eigenvalues as functions of the symmetric operator.- 5. Applications. A theorem of Lidskii.- Three Introduction to the theory of operators in Banach spaces.- 1. Banach spaces.- 1. Normed spaces.- 2. Banach spaces.- 3. Linear forms.- 4. The adjoint space.- 5. The principle of uniform boundedness.- 6. Weak convergence.- 7. Weak* convergence.- 8. The quotient space.- 2. Linear operators in Banach spaces.- 1. Linear operators. The domain and range.- 2. Continuity and boundedness.- 3. Ordinary differential operators of second order.- 3. Bounded operators.- 1. The space of bounded operators.- 2. The operator algebra ?(X).- 3. The adjoint operator.- 4. Projections.- 4. Compact operators.- 1. Definition.- 2. The space of compact operators.- 3. Degenerate operators. The trace and determinant.- 5. Closed operators.- 1. Remarks on unbounded operators.- 2. Closed operators.- 3. Closable operators.- 4. The closed graph theorem.- 5. The adjoint operator.- 6. Commutativity and decomposition.- 6. Resolvents and spectra.- 1. Definitions.- 2. The spectra of bounded operators.- 3. The point at infinity.- 4. Separation of the spectrum.- 5. Isolated eigenvalues.- 6. The resolvent of the adjoint.- 7. The spectra of compact operators.- 8. Operators with compact resolvent.- Four Stability theorems.- 1. Stability of closedness and bounded invertibility.- 1. Stability of closedness under relatively bounded perturbation.- 2. Examples of relative boundedness.- 3. Relative compactness and a stability theorem.- 4. Stability of bounded in vertibility.- 2. Generalized convergence of closed operators.- 1. The gap between subspaces.- 2. The gap and the dimension.- 3. Duality.- 4. The gap between closed operators.- 5. Further results on the stability of bounded in vertibility.- 6. Generalized convergence.- 3. Perturbation of the spectrum.- 1. Upper semicontinuity of the spectrum.- 2. Lower semi-discontinuity of the spectrum.- 3. Continuity and analyticity of the resolvent.- 4. Semicontinuity of separated parts of the spectrum.- 5. Continuity of a finite system of eigenvalues.- 6. Change of the spectrum under relatively bounded perturbation.- 7. Simultaneous consideration of an infinite number of eigenvalues.- 8. An application to Banach algebras. Wiener's theorem.- 4. Pairs of closed linear manifolds.- 1. Definitions.- 2. Duality.- 3. Regular pairs of closed linear manifolds.- 4. The approximate nullity and deficiency.- 5. Stability theorems.- 5. Stability theorems for semi-Fredholm operators.- 1. The nullity, deficiency and index of an operator.- 2. The general stability theorem.- 3. Other stability theorems.- 4. Isolated eigenvalues.- 5. Another form of the stability theorem.- 6. Structure of the spectrum of a closed operator.- 6. Degenerate perturbations.- 1. The Weinstein-Aronszajn determinants.- 2. The W-A formulas.- 3. Proof of the W-A formulas.- 4. Conditions excluding the singular case.- Five Operators in Hilbert spaces.- 1. Hilbert space.- 1. Basic notions.- 2. Complete orthonormal families.- 2. Bounded operators in Hilbert spaces.- 1. Bounded operators and their adjoints.- 2. Unitary and isometric operators.- 3. Compact operators.- 4. The Schmidt class.- 5. Perturbation of orthonormal families.- 3. Unbounded operators in Hilbert spaces.- 1. General remarks.- 2. The numerical range.- 3. Symmetric operators.- 4. The spectra of symmetric operators.- 5. The resolvents and spectra of selfadjoint operators.- 6. Second-order ordinary differential operators.- 7. The operators T*T.- 8. Normal operators.- 9. Reduction of symmetric operators.- 10. Semibounded and accretive operators.- 11. The square root of an m-accretive operator.- 4. Perturbation of self adjoint operators.- 1. Stability of selfadjointness.- 2. The case of relative bound 1.- 3. Perturbation of the spectrum.- 4. Semibounded operators.- 5. Completeness of the eigenprojections of slightly non-selfadjoint operators.- 5. The Schrodinger and Dirac operators.- 1. Partial differential operators.- 2. The Laplacian in the whole space.- 3. The Schrodinger operator with a static potential.- 4. The Dirac operator.- Six Sesquilinear forms in Hilbert spaces and associated operators.- 1. Sesquilinear and quadratic forms.- 1. Definitions.- 2. Semiboundedness.- 3. Closed forms.- 4. Closable forms.- 5. Forms constructed from sectorial operators.- 6. Sums of forms.- 7. Relative boundedness for forms and operators.- 2. The representation theorems.- 1. The first representation theorem.- 2. Proof of the first representation theorem.- 3. The Friedrichs extension.- 4. Other examples for the representation theorem.- 5. Supplementary remarks.- 6. The second representation theorem.- 7. The polar decomposition of a closed operator.- 3. Perturbation of sesquilinear forms and the associated operators.- 1. The real part of an m-sectorial operator.- 2. Perturbation of an m-sectorial operator and its resolvent.- 3. Symmetric unperturbed operators.- 4. Pseudo-Friedrichs extensions.- 4. Quadratic forms and the Schrodinger operators.- 1. Ordinary differential operators.- 2. The Dirichlet form and the Laplace operator.- 3. The Schrodinger operators in R3.- 4. Bounded regions.- 5. The spectral theorem and perturbation of spectral families.- 1. Spectral families.- 2. The selfadjoint operator associated with a spectral family.- 3. The spectral theorem.- 4. Stability theorems for the spectral family.- Seven Analytic perturbation theory.- 1. Analytic families of operators.- 1. Analyticity of vector- and operator-valued functions.- 2. Analyticity of a family of unbounded operators.- 3. Separation of the spectrum and finite systems of eigenvalues.- 4. Remarks on infinite systems of eigenvalues.- 5. Perturbation series.- 6. A holomorphic family related to a degenerate perturbation.- 2. Holomorphic families of type (A).- 1. Definition.- 2. A criterion for type (A).- 3. Remarks on holomorphic families of type (A).- 4. Convergence radii and error estimates.- 5. Normal unperturbed operators.- 3. Selfadjoint holomorphic families.- 1. General remarks.- 2. Continuation of the eigenvalues.- 3. The Mathieu, Schrodinger, and Dirac equations.- 4. Growth rate of the eigenvalues.- 5. Total eigenvalues considered simultaneously.- 4. Holomorphic families of type (B).- 1. Bounded-holomorphic families of sesquilinear forms.- 2. Holomorphic families of forms of type (a) and holomorphic families of operators of type (B).- 3. A criterion for type (B).- 4. Holomorphic families of type (B0).- 5. The relationship between holomorphic families of types (A) and (B).- 6. Perturbation series for eigenvalues and eigenprojections.- 7. Growth rate of eigenvalues and the total system of eigenvalues.- 8. Application to differential operators.- 9. The two-electron problem.- 5. Further problems of analytic perturbation theory.- 1. Holomorphic families of type (C).- 2. Analytic perturbation of the spectral family.- 3. Analyticity of |H(x)| and |H(x)|?.- 6. Eigenvalue problems in the generalized form.- 1. General considerations.- 2. Perturbation theory.- 3. Holomorphic families of type (A).- 4. Holomorphic families of type (B).- 5. Boundary perturbation.- Eight Asymptotic perturbation theory.- 1. Strong convergence in the generalized sense.- 1. Strong convergence of the resolvent.- 2. Generalized strong convergence and spectra.- 3. Perturbation of eigenvalues and eigenvectors.- 4. Stable eigenvalues.- 2. Asymptotic expansions.- 1. Asymptotic expansion of the resolvent.- 2. Remarks on asymptotic expansions.- 3. Asymptotic expansions of isolated eigenvalues and eigenvectors.- 4. Further asymptotic expansions.- 3. Generalized strong convergence of sectorial operators.- 1. Convergence of a sequence of bounded forms.- 2. Convergence of sectorial forms "from above".- 3. Nonincreasing sequences of symmetric forms.- 4. Convergence from below.- 5. Spectra of converging operators.- 4. Asymptotic expansions for sectorial operators.- 1. The problem. The zeroth approximation for the resolvent.- 2. The 1/2-order approximation for the resolvent.- 3. The first and higher order approximations for the resolvent.- 4. Asymptotic expansions for eigenvalues and eigenvectors.- 5. Spectral concentration.- 1. Unstable eigenvalues.- 2. Spectral concentration.- 3. Pseudo-eigenvectors and spectral concentration.- 4. Asymptotic expansions.- Nine Perturbation theory for semigroups of operators.- 1. One-parameter semigroups and groups of operators.- 1. The problem.- 2. Definition of the exponential function.- 3. Properties of the exponential function.- 4. Bounded and quasi-bounded semigroups.- 5. Solution of the inhomogeneous differential equation.- 6. Holomorphic semigroups.- 7. The inhomogeneous differential equation for a holomorphic semigroup.- 8. Applications to the heat and Schrodinger equations.- 2. Perturbation of semigroups.- 1. Analytic perturbation of quasi-bounded semigroups.- 2. Analytic perturbation of holomorphic semigroups.- 3. Perturbation of contraction semigroups.- 4. Convergence of quasi-bounded semigroups in a restricted sense.- 5. Strong convergence of quasi-bounded semigroups.- 6. Asymptotic perturbation of semigroups.- 3. Approximation by discrete semigroups.- 1. Discrete semigroups.- 2. Approximation of a continuous semigroup by discrete semigroups.- 3. Approximation theorems.- 4. Variation of the space.- Ten Perturbation of continuous spectra and unitary equivalence.- 1. The continuous spectrum of a selfadjoint operator.- 1. The point and continuous spectra.- 2. The absolutely continuous and singular spectra.- 3. The trace class.- 4. The trace and determinant.- 2. Perturbation of continuous spectra.- 1. A theorem of Weyl-von Neumann.- 2. A generalization.- 3. Wave operators and the stability of absolutely continuous spectra.- 1. Introduction.- 2. Generalized wave operators.- 3. A sufficient condition for the existence of the wave operator.- 4. An application to potential scattering.- 4. Existence and completeness of wave operators.- 1. Perturbations of rank one (special case).- 2. Perturbations of rank one (general case).- 3. Perturbations of the trace class.- 4. Wave operators for functions of operators.- 5. Strengthening of the existence theorems.- 6. Dependence of W+- (H2, H1) on H1 and H2.- 5. A stationary method.- 1. Introduction.- 2. The ? operations.- 3. Equivalence with the time-dependent theory.- 4. The ? operations on degenerate operators.- 5. Solution of the integral equation for rank A = 1.- 6. Solution of the integral equation for a degenerate A.- 7. Application to differential operators.- Supplementary Notes.- Supplementary Bibliography.- Notation index.- Author index.
「Nielsen BookData」 より