Progress in atomic spectroscopy
著者
書誌事項
Progress in atomic spectroscopy
(Physics of atoms and molecules)
Plenum Press, c1978-c1987
- pt. A
- pt. B
- pt. C
- pt. D
大学図書館所蔵 全50件
-
pt. A539.1/P 964002254,
pt. B539.1/P 964002255, pt. C539.1/P 964005659, pt. D539.1/P 964012964 -
岡山大学 附属図書館理物理
pt. A425.5||P0133763,
pt. B425.5||P0133764, pt. C425.5||P12188025312, pt. D425.5||P016000064628* -
岡山大学 附属図書館附属図
pt. A425.5||PS011217724400*,
pt. B425.5||PS011217724401*, pt. C425.5||PS011217724402*, pt. D425.5||P016000035225* -
pt. A425B||Pro||1P12857,
pt. B425B||Pro||2P13256, pt. C425B||Pro||3P17580, pt. D425B||Pro||4P22458
注記
Pts. C-D edited by H.J. Beyer and Hans Kleinpoppen
Includes bibliographical references and indexes
内容説明・目次
- 巻冊次
-
pt. A ISBN 9780306311154
内容説明
目次
- 巻冊次
-
pt. C ISBN 9780306413001
内容説明
目次
- 巻冊次
-
pt. D ISBN 9780306425288
内容説明
目次
- of Part D.- 1 Laser-Microwave Spectroscopy.- 1. Introduction.- 1.1. Classical Experiments with Radiofrequency Transitions.- 1.2. Lasers versus Classical Light Sources in rf Spectroscopy Experiments.- 2. Classification of Laser-Microwave Spectroscopy.- 2.1. General Considerations.- 2.2. Classification.- 2.3. Resume.- 3. Measurements Based on Optical Pumping.- 3.1. Experiments with Resonance Cells.- 3.2. Particle-Beam Techniques.- 3.3. Spectroscopy of Trapped Ions.- 3.4. Experiments in Solids.- 4. Measurements Based on Double Resonance.- 4.1. Low-Lying (Short-Lived) Excited States.- 4.2. Rydberg States.- 5. Measurements Based on Nonlinear Phenomena.- 5.1. General Considerations.- 5.2. Experiments with Resonance Vessels.- 5.3. Particle Beam Experiments.- 6. Other Schemes.- 7. Laser-Microwave Heterodyne Techniques for Spectroscopic Purposes.- 7.1. Frequency-Offset Locking.- 7.2. Laser Light Modulation and Side Band Tuning.- 7.3. Various Other Schemes.- 8. Concluding Remarks.- References.- 2 Collinear Fast-Beam Laser Spectroscopy.- 1. Introduction.- 2. Basic Concept and Experimental Realization.- 3. Experiments Based on the Doppler Effect.- 3.1. Beam Velocity Analysis.- 3.2. High-Voltage Measurement and Calibration.- 3.3. Relativistic Doppler Shift.- 4. Spectroscopic Studies.- 4.1. Experimental Details.- 4.2. Laser-rf and Related Techniques.- 4.3. Nonlinear Spectroscopy.- 4.4. Transient Phenomena.- 4.5. Spectroscopic Results.- 5. Spectroscopy on Unstable Isotopes.- 5.1. Hyperfine Structure and Isotope Shifts.- 5.2. Review of Experiments.- 5.3. Experimental Setup and Procedure.- 5.4. Results in Nuclear Physics.- 5.5. Higher Sensitivity by Ionization.- 5.6. Implantation of Polarized Atoms.- 6. Conclusion.- References.- 3 Radiofrequency Spectroscopy of Rydberg Atoms.- 1. Introduction.- 2. Rydberg Atoms.- 3. Core Polarization and Penetration.- 3.1. Fine Structure.- 3.2. The Stark Effect in Alkali Atoms.- 4. Experimental Techniques.- 4.1. Quantum Beats.- 4.2. Optical Spectroscopy.- 4.3. Radiofrequency Resonance.- 4.4. Optical Detection.- 4.5. Selective Field Ionization.- 4.6. Delayed Field Ionization.- 4.7. Selective Resonance Ionization.- 4.8. Applicability.- 5. Overview of the Results Obtained.- 5.1. Quantum Defects-Core Polarization.- 5.2. The Nonadiabatic Effects in Alkaline Earth Atoms.- 5.3. Fine Structure Intervals of Alkali Atoms.- 5.4. Applications.- References.- 4 Rydberg Series of Two-Electron Systems Studied by Hyperfine Interactions.- 1. Introduction.- 2. Experimental Techniques.- 2.1. Atomic Beam Experiments.- 2.2. Experiments Using Vapor Cells.- 3. Even-Parity Rydberg Series of Alkaline-Earth Elements.- 3.1. msns1,3S Rydberg Series of Ca (m = 4), Sr (m = 5), and Ba (m = 6).- 3.2. msnd1,3D Rydberg Series of Ca, Sr, and Ba.- 4. Odd-Parity Rydberg Series of Alkaline-Earth Elements.- 4.1. Hyperfine Structure and Singlet-Triplet Mixing of 6snp1P1 Ba Rydberg States.- 4.2. Hyperfine Structure of 6snf3F Rydberg Series of 137Ba.- 4.3. Hyperfine-Induced Singlet-Triplet Mixing of 3snf1,3F Rydberg States of 25Mg.- 5. Hyperfine Structure and Isotope Shifts of Rydberg States of Other Two-Electron Systems.- 5.1. 6snl Rydberg Series of Yb.- 5.2. 1sns and 1snd Rydberg States of 3He.- 6. Conclusion.- References.- 5 Parity Nonconservation in Atoms.- 1. Introduction.- 1.1. The Weak Interaction-Charged Currents and Neutral Currents.- 1.2. Atomic Structure and Parity Nonconservation.- 1.3. Optical Rotation and Circular Dichroism.- 2. Theory.- 2.1. A Simple Calculation.- 2.2. Effect in Heavy Atoms.- 2.3. Transitions of Interest.- 3. Circular Dichroism and Optical Rotation-Rigorous Discussion.- 3.1. PNC-Stark Interference.- 4. Optical Rotation Experiments.- 4.1. Angle Resolution.- 4.2. Faraday Rotation.- 4.3. The Seattle Optical Rotation Experiments.- 4.4. Results of the Seattle Bismuth Experiment.- 4.5. Measurements on the 1.28-?m Line of Atomic Lead.- 5. Stark-PNC Experiments
- Cesium and Thallium.- 6. Discussion of Results
- Conclusions.- 6.1. Future Prospects.- References.- 6 Energy Structure of Highly Ionized Atoms.- 1. Introduction.- 2. General Energy Relations in Isoelectronic Ions.- 3. Survey of the Low Configurations in Isoelectronic Sequences.- 4. The n = 2 Configurations.- 5. The Neon Sequence (N = 10).- 6. Ions with Ground Configurations of 3s and 3p Electrons.- 7. The Configurations 3dk.- 7.1. The Potassium Sequence (N = 19).- 7.2. The Iron Sequence (N = 26).- 7.3. The Cobalt Sequence (N = 27).- 7.4. The Nickel Sequence (N = 28).- 8. The Copper Sequence (N = 29).- 9. The Silver Sequence (N = 47).- References.- 7 Inner-Shell Spectroscopy with Hard Synchrotron Radiation.- 1. Introduction.- 2. Instrumental Details.- 2.1. Characteristics of Synchrotron Radiation.- 2.2. X-Ray Monochromators.- 2.3. X-Ray Detectors.- 3. X-Ray Absorption by Free Atoms.- 3.1. X-Ray Attenuation.- 3.2. Energies and Widths of Inner-Shell Levels.- 3.3. Correlation Effects in X-Ray Absorption.- 4. X-Ray Absorption by Bound Atoms.- 4.1. X-Ray Absorption near Edge Structure (XANES).- 4.2. Extended X-Ray Absorption Fine Structure (EXAFS).- 5. Induced X-Ray Fluorescence and Auger-Electron Emission.- 5.1. Application for Chemical Analysis.- 5.2. Decay Channels of Inner-Shell Vacancies.- 5.3. Resonant Raman Auger (RRA) Process.- 6. Scattering of X-Rays.- 6.1. Rayleigh and Compton Scattering.- 6.2. Resonant Raman Scattering (RRS).- References.- 8 Analysis and Spectroscopy of Collisionally Induced Autoionization Processes.- 1. Introduction.- 2. Description of Autoionizing States.- 2.1. The Independent Particle Model.- 2.2. Correlated Electron Motion.- 3. Experimental Methods.- 3.1. Kinematical Effects.- 3.2. Coincidence Experiments.- 4. Line Shapes and Interference Effects in Autoionization Spectroscopy.- 4.1. Direct Ionization and Autoionization.- 4.2. Postcollision Interaction (PCI) in Ion-Atom Collisions.- 4.3. PCI in Electron-Atom Collisions.- 4.4. PCI-Influenced Auger Electron Spectra.- 4.5. PCI-Induced Exchange of Angular Momentum.- 5. Spectroscopic Data for Various Atoms.- 5.1. H" and He.- 5.2. Rare Gases Ne***Xe.- 5.3. Alkali Atoms.- 5.4. Alkaline Earth Atoms.- 6. Correlated and Uncorrelated Angular Distributions of Autoionization Electrons.- 6.1. Excitation Amplitudes and Density Matrix of Excited Atoms.- 6.2. Theoretical Shapes of Angular Electron Distributions.- 6.3. Coincidence Measurements to Determine Angular Correlations between Ejected Electrons and Scattered Projectiles.- 6.4. Noncoincident Measurements of Angular Electron Distributions.- 6.5. Electron Beats.- 7. Electron Emission from Quasimolecules.- 7.1. Coherent Electron Emission from Two Separated Collision Partners.- 7.2. Quasimolecular Autoionization at Small Internuclear Distances.- References.- 9 Near Resonant Vacancy Exchange between Inner Shells of Colliding Heavy Particles.- 1. Introduction.- 2. Theoretical Methods.- 2.1. Vacancy Exchange Mechanisms.- 2.2. Basic Formalism.- 2.3. Model Matrix Elements.- 3. Two-State Systems.- 3.1. Two-State Formalism.- 3.2. MO Energies and Radial Coupling Matrix Elements.- 3.3. Highly Ionized Collision Systems.- 3.4. Vacancy Sharing.- 3.5. Impact Parameter Dependence.- 3.6. Double Passage Process.- 3.7. Total Cross Sections.- 4. Multistate Systems.- 4.1. General Considerations.- 4.2. KL- and LK-Vacancy Sharing.- 4.3. L-Vacancy Sharing.- 5. Conclusions.- References.- 10 Polarization Correlation in the Two-Photon Decay of Atoms.- 1. Introduction.- 2. Theoretical Considerations.- 2.1. Polarization Correlation.- 2.2. The Two-Photon State Vector.- 2.3. Bell's Inequalities for the Ideal Case.- 2.4. The BCHSH Inequality in Experimental Situations.- 2.5. Quantum Mechanical Predictions.- 2.6. The No-Enhancement Hypothesis.- 2.7. The Schrodinger-Furry Hypothesis.- 3. Experimental Work.- 3.1. Experiment of Kocher and Commins (1967).- 3.2. Experiment of Freedman and Clauser (1972).- 3.3. Experiment of Holt and Pipkin (1973).- 3.4. Experiments of Clauser (1976).- 3.5. Experiment of Fry and Thompson (1976).- 3.6. Experiment of Aspect, Grangier, and Roger (1981).- 3.7. Experiment of Aspect, Grangier, and Roger (1982).- 3.8. Experiment of Aspect, Dalibard, Grangier, and Roger (1984).- 3.9. Experiment of Aspect, Dalibard, and Roger (1982).- 3.10. Experiments of Perrie, Duncan, Beyer, and Kleinpoppen (1985).- 4. Discussion.- References.
「Nielsen BookData」 より