書誌事項

Electrochemical processing

edited by J. O'M. Bockris ... [et al.]

(Comprehensive treatise of electrochemistry, v. 2)

Plenum Press, c1981

大学図書館所蔵 件 / 45

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

It is now time for a comprehensive treatise to look at the whole field of electrochemistry. The present treatise was conceived in 1974, and the earliest invitations to authors for contributions were made in 1975. The completion of the early volumes has been delayed by various factors. There has been no attempt to make each article emphasize the most recent situation at the expense of an overall statement of the modern view. This treatise is not a collection of articles from Recent Advances in Electrochemistry or Modern Aspects of Electrochemistry. It is an attempt at making a mature statement about the present position in the vast area of what is best looked at as a new interdisciplinary field. Texas A & M University J. O'M. Bockris University of Ottawa B. E. Conway Case Western Reserve University Ernest Yeager & M University Texas A Ralph E. White Preface to Volume 2 This volume brings together some dozen processes well known to the electro- chemist and treats them according to their various degrees of importance. The production of hydrogen is one of the more important processes, particularly with respect to the prospects of a hydrogen economy. No one would doubt, however, that the most commercially important electrochemical processes at the present time are the production of aluminum and of chlorine. Each of these processes has a separate chapter devoted to it.

目次

  • 1. Electrolytic Production of Hydrogen.- 1. Rationale for Electrolytic Production of Hydrogen.- 2. General Aspects of Water Electrolysis Technology.- 2.1. Types of Water Electrolyzers.- 2.2. Mass and Energy Balance for a Water Electrolyzer.- 2.3. Typical Process Flow Sheet for a Water Electrolysis Plant.- 3. Alkaline Water Electrolyzers.- 3.1. Thermodynamics.- 3.2. Electrode Kinetics.- 3.3. Commercial Electrolyzers-Design Features and Operating Characteristics.- 3.4. Novel Alkaline Electrolyzers.- 3.5. Projected Advances in Alkaline Water Electrolysis Technologies.- 4. Solid Polymer Electrolyte (SPE) Water Electrolyzers.- 4.1. Thermodynamics.- 4.2. Electrode Kinetics.- 4.3. Electrode Configurations.- 4.4. Electrolytic Cells-Design Aspects.- 4.5. Comparison of Operating Parameters of Various Cells.- 5. Economics of Hydrogen Production.- 6. Futuristic Concepts for Electrolytic Production of Hydrogen.- 6.1. Use of Anode Depolarizers.- 6.2. Water Vapor Electrolysis.- 6.3. Thermochemical-Electrochemical Hybrid Cycles.- 6.4. Photoelectrolysis of Water.- 7. Heavy Water-A Useful By-Product.- References.- 2. Production of Chlorine.- 1. Introduction.- 1.1. Significance.- 1.2. Scope.- 1.3. Major End Uses.- 2. Historical Survey.- 2.1. Nonelectrolytic Processes.- 2.2. Early History of Electrolysis.- 2.3. The Diaphragm Cell.- 2.4. The Mercury Cell.- 3. Electrolytic Decomposition of Sodium Chloride.- 3.1. Manufacturing Processes.- 3.2. Cell Voltage.- 3.3. Current Efficiency.- 3.4. Energy Efficiency.- 3.5. Energy Consumption.- 4. Cell Components.- 4.1. Anodes.- 4.2. Cathodes.- 4.3. Cell Separators.- 5. Cell Technology.- 5.1. Diaphragm Cells.- 5.2. Mercury Cells.- 5.3. Membrane Cells.- 6. Chloralkali Plant Auxiliaries.- 6.1. General.- 6.2. Direct Current Electric Power.- 6.3. Brine Purification.- 6.4. Chlorine Processing.- 6.5. Hydrogen Recovery.- 6.6. Caustic Soda Processing.- 7. Future Trends.- References.- 3. Inorganic Electrosynthesis.- 1. Introduction.- 1.1. Scope.- 1.2. History and Current Outlook of Inorganic Electrosynthesis.- 2. Chlorate.- 2.1. Industrial Significance.- 2.2. Development of Theory and Technology
  • Main Features of the Present State of the Art.- 2.3. Fundamentals.- 2.4. Discussion of the Factors Relevant for Industrial Chlorate Electrolysis.- 2.5. Industrial Cells.- 3. Hypochlorite.- 3.1. Industrial Significance.- 3.2. Development of Theory and Technology.- 3.3. Reaction Fundamentals.- 3.4. Industrial Cells.- 4. Perchloric Acid and Perchlorate.- 4.1. Methods of Preparation.- 4.2. Industrial Significance.- 4.3. Development of Theory and Technology.- 4.4. Reactions and Mechanisms.- 4.5. Industrial Cells.- 5. Bromate.- 6. Iodate and Periodate.- 6.1. Iodate.- 6.2. Periodate.- 7. Peroxodisulfate.- 7.1. Reaction Fundamentals.- 7.2. Industrial Cells.- 8. Hydrogen Peroxide.- 8.1. Hydrogen Peroxide by Anodic Oxidation.- 8.2. Hydrogen Peroxide by Direct Cathodic Reduction.- 8.3. Hydrogen Peroxide by Indirect Reduction.- 8.4. Development of Technology.- 9. Perborate.- 10. Permanganate.- 10.1. Industrial Significance.- 10.2. Reaction Fundamentals.- 10.3. Development of Technology.- 10.4. Industrial Cells.- 11. Chromic Acid.- 11.1. Industrial Significance.- 11.2. Development of Technology.- 11.3. Reaction Fundamentals.- 11.4. Industrial Cells.- 12. Sodium Sulfate Electrolysis.- Auxiliary Notation.- References.- 4. Electro-Organic Syntheses.- 1. Introduction.- 1.1. Historical Survey.- 1.2. Electro-organic Synthesis and Electrochemical Engineering.- 1.3. Mediated Electrochemical Synthesis.- 1.4. Future Development.- 1.5. Scope of this Chapter.- 2. Direct Electrochemical Oxidation and Reduction of Organic Molecules.- 2.1. Introduction and Survey.- 2.2. Molecular Orbital (MO) Representation and Energy Demand for the Anodic Radical Cation and Cathodic Radical Anion Formation from Unsaturated Hydrocarbon Molecules.- 2.3. Huckel Molecular Orbital (HMO) Representation of the Electrochemical Oxidation and Reduction of Double Bonds between Carbon and Heteroatoms.- 2.4. Reactivity of Radical Cations and Radical Anions Generated from Unsaturated Hydrocarbon Molecules.- 2.5. Typical Chemical Reactions of Radical Cations and Radical Anions Generated Electrochemically from Unsaturated Hydrocarbons.- 2.6. Electrochemical Generation of C Radicals and Their Reactions.- 2.7. Summary of Reaction Types for the Direct Electrochemical Conversion of Organic Substances.- 2.8. Influence of Electrosorption for Product Composition and Yields of Electro-organic Synthetic Processes.- 2.9. Solvent Electrolyte Systems and Electrolyte Materials Used in Electro-organic Synthesis.- 3. Mediated Electrochemical Conversion of Organic Substrates.- 3.1. Description of Mediated Electro-organic Synthesis.- 3.2. Anodic Mediator System.- 3.3. Cathodic Mediator System and Typical Mediated Homogeneous and Heterogeneous Cathodic Conversions.- 4. Semitechnical and Technical Electrochemical Organic Synthesis.- 4.1. General Remarks.- 4.2. Anodic Processes.- 4.3. Cathodic Processes.- References.- 5. Electrometallurgy of Aluminum.- 1. Hall-Heroult Cell for Alumina Reduction.- 2. Electrolyte.- 2.1. Composition and Physical Properties.- 2.2. Ionic Constitution of the Electrolyte.- 2.3. Dissolution of Alumina.- 3. Electrode Reactions.- 3.1. Cathode Reactions.- 3.2. Anode Process.- 4. Current Efficiency.- 4.1. Factors Controlling Reoxidation Rate.- 4.2. Other Losses in Current Efficiency.- 5. Energy Considerations.- 6. Electromagnetic Effects.- 7. Producing High-Purity Aluminum.- 8. Electrolysis of Aluminum Chloride.- References.- 6. Electrolytic Refining and Winning of Metals.- 1. Introduction.- 2. Electrochemical Principles of Electrorefining and Electrowinning.- 2.1. Electrochemical Selectivity.- 2.2. Addition Agents.- 2.3. Mass Transport in Refining and Electrowinning Cells.- 3. Technological Principles of Refining and Electrowinning.- 3.1. Soluble Anodes.- 3.2. Insoluble Anodes for Electrowinning.- 3.3. Cathodes.- 3.4. Electrolytic Cells.- 3.5. Electrical Circuits.- 3.6. Electrolyte Circuits.- 3.7. Slime Handling.- 3.8. Material Handling.- 3.9. Electrolyte Mist in Electrowinning.- 4. Operating Practices.- 4.1. Copper Refining.- 4.2. Lead Refining.- 4.3. Nickel Refining.- 4.4. Silver Refining.- 4.5. Refining of Other Metals.- 4.6. Zinc Electrowinning.- 4.7. Copper Electrowinning.- 4.8. Nickel Electrowinning.- 4.9. Cobalt Electrowinning.- 4.10. Electrowinning of Other Metals.- References.- 7. Electroplating.- 1. Introduction.- 2. Present-Day Technology of Electroplating with Metals.- 3. Electrolytically Produced Metallic and Nonmetallic Layers.- 4. Electroforming.- 5. Solutions Used in Electroplating.- 6. Alloy Plating.- 7. Properties of Deposits.- 8. Inhibitors.- 9. Throwing Power.- 10. Leveling.- 11. Further Work on Alloys.- 12. Effect of Complexing.- 13. Summary.- Suggested Reading.- References.- 8. Electrochemical Machining.- 1. Introduction.- 2. Corrosion Process Fundamentals.- 2.1. Local Cell Corrosion.- 2.2. Bimetallic Corrosion.- 2.3. Anodic Corrosion.- 3. Electropolishing.- 4. Jet Etching.- 5. Electrochemical Grinding.- 6. Principles of Electrochemical Machining.- 6.1. The Gap and Feed Rate.- 6.2. Temperature Effects.- 6.3. Pressure Effects.- 6.4. Hydrogen Bubble Effects.- 6.5. Effects of Corrosion Products.- 6.6. Metal Removal Rate Considerations.- 6.7. Effects of Stray Currents.- 6.8. Addition Agent Studies.- 6.9. Surface Finish Considerations.- 7. Electrochemical Machining Operations.- 7.1. External Shaping.- 7.2. Die Sinking.- 7.3. Plunge-Cutting.- 7.4. Turning.- 7.5. Trepanning.- 7.6. Internal Grooving.- 7.7. Wire Cutting.- 7.8. Deburring.- 7.9. ECM Machines.- 8. The Electrochemistry of Electrochemical Machining.- 8.1. New Electrolyte Studies.- 8.2. ECM Precautions with Oxidizing Salt Electrolytes.- 8.3. Polarization Studies.- 8.4. Transpassive Dissolution of Anodic Films.- 8.5. Surface Brightening.- 8.6. Solution Flow Effects.- 8.7. Other ECM Electrolytes.- 8.8. Mixed Electrolytes.- 8.9. High-Strength, High-Temperature Alloys.- 8.10. The ECM of Other Metals.- 8.11. Pulsed ECM Methods.- 8.12. Consensus.- 9. Electrochemical Machining Applications.- 9.1. Stem Drilling.- 9.2. Fixture Electrochemical Machining (Cell Type).- 9.3. ECM Broaching.- 9.4. Electrolytic Grinding (ELG, ECG).- Auxiliary Notation.- References.- 9. Theory of the Structure of lonomeric Membranes.- 1. Introduction.- 2. Cluster Formation Model.- 2.1. General Mechanism of Cluster Formation.- 2.2. The Dry State.- 2.3. Exposure to Water.- 2.4. Exposure to Aqueous Ionic Solutions.- 2.5. Application of the Theory to Nafion.- 3. Cluster Property Model.- 4. Summary.- References.- 10. Electrodeposition of Paint.- 1. Introduction.- 2. Historical Development.- 3. Anodic EDP Process.- 3.1. General Considerations.- 3.2. Static Properties of the Bath and of the Film.- 3.3. Electrocoagulation as the Primary Process.- 3.4. Thickness Growth of Film as the Secondary Process.- 4. Cathodic EDP Process.- 5. Deposition of Dispersions and Latices.- 6. Chemistry of Resins and of the Bath.- 7. Pretreatment of the Substrate.- 8. Practical Aspects of the EDP Process.- 9. Follow-Up Steps after Electrodeposition.- 10. Electrochemical Alternative Processes.- References.- 11. Mineral Flotation.- 1. Introduction.- 2. Adhesion of Particles to Gas Bubbles.- 2.1. Thermodynamics of Bubble Attachment.- 2.2. Kinetics of Bubble Attachment.- 3. Flotation of Oxide Minerals.- 3.1. Surface Charge.- 3.2. Collector Adsorption.- 3.3. Influence of Inorganic Ions in Solution.- 3.4. Interaction between Hydrocarbon Chains.- 3.5. Influence of Neutral Organic Molecules.- 4. Flotation of Sulfide Minerals.- 4.1. Mixed Potential Mechanism of Collector Adsorption.- 4.2. Anodic Oxidation of Sulfide Minerals.- 4.3. Anodic Oxidation of Collectors.- 4.4. Cathodic Reduction of Oxygen at Sulfide Surfaces.- 4.5. Modulation of Sulfide Flotation.- 4.6. Investigations of the Flotation of Mineral Particles as a Function of Potential.- References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ