Nonequilibrium phase transitions in semiconductors : self-organization induced by generation and recombination processes
Author(s)
Bibliographic Information
Nonequilibrium phase transitions in semiconductors : self-organization induced by generation and recombination processes
(Springer series in synergetics, v. 35)
Springer-Verlag, c1987
- : us
- : gw
- : pbk
Available at / 60 libraries
-
The Institute for Solid State Physics Library. The University of Tokyo.図書室
428.41:N147230038346
-
The Institute for Solid State Physics Library. The University of Tokyo.研究部門
: gw428.41:S7200004336
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
DC19:537.6/Sch3682070068593
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. [287]-308) and index
Description and Table of Contents
- Volume
-
: gw ISBN 9783540175827
Table of Contents
1. Introduction.- 1.1 Instabilities in Semiconductors.- 1.1.1 Negative Differential Conductivity.- 1.1.2 Mechanisms for NDC.- 1.1.3 Semiconductor Transport.- 1.2 Phase Transition Analogies.- 1.2.1 Equilibrium and Nonequilibrium Phase Transitions.- 1.2.2 Semiconductors as Nonequilibrium Systems.- 1.2.3 Bifurcation Phenomena.- 2. Bistability of Homogeneous Steady States.- 2.1 One-Carrier Models.- 2.1.1 Second-Order Phase Transitions.- 2.1.2 First-Order Phase Transitions.- 2.1.3 General M-Level Mechanisms.- 2.1.4 Critical Behavior.- 2.1.5 Cyclotron-Resonance Induced Phase Transitions.- 2.2 Two-Carrier Models.- 2.2.1 Models with Band-Band Impact Ionization.- 2.2.2 Models with Band-Trap Impact Ionization.- 2.2.3 Dynamics of Threshold Switching Transitions.- 2.2.4 Auger Recombination Induced Tristability.- 2.3 Excitonic Models.- 2.3.1 Stimulated Exciton Creation.- 2.3.2 Bound-Exciton Recombination and Optical Bistability.- 3. Small Fluctuations from the Homogeneous Steady State.- 3.1 Linear Modes of One-Carrier Models.- 3.1.1 Linearized Transport Equations.- 3.1.2 Stability and Differential Conductivity.- 3.2 Filamentary Instability.- 3.2.1 The Spectrum.- 3.2.2 Bifurcation of Layered or Filamentary Stationary Structures.- 3.3 Domain Instability.- 3.4 Electromagnetic Modes.- 3.4.1 Maxwell's Equations in Media with NDC.- 3.4.2 Transverse Modes (k???).- 3.4.3 Longitudinal Modes (k???).- 3.4.4 Mixed Modes.- 3.5 Oscillatory Instability.- 3.5.1 Two-Level Models.- 3.5.2 Single-Level Models.- 4. Stationary Transverse Spatial Structures.- 4.1 Plane Current Layers.- 4.1.1 Phase Portraits.- 4.1.2 Equal-Areas Rule.- 4.1.3 Electron-Density Profiles.- 4.1.4 Current-Voltage Characteristics.- 4.2 Cylindrical Current Filaments.- 4.2.1 Electron-Density Profiles.- 4.2.2 Equal-Areas Rule.- 4.3 Influence of Boundaries.- 4.3.1 Lateral Boundary Conditions.- 4.3.2 Neumann Boundary Conditions.- 4.3.3 Dirichlet Boundary Conditions.- 4.4 Filamentation in Two-Carrier Models.- 4.4.1 Ambipolar Diffusion and Trapping.- 4.4.2 Equal-Areas Rules for Current Layers and Filaments.- 4.5 Multiple Filaments.- 5. Stability of Transverse Spatial Structures.- 5.1 Plane Current Layers.- 5.1.1 General Results.- 5.1.2 Unstable Modes of Depletion Layers.- 5.1.3 Stable Modes of the Kink Profile.- 5.2 Cylindrical Current Filaments.- 5.2.1 General Results.- 5.2.2 Unstable Mode.- 5.3 Finite Boundary Conditions.- 5.3.1 Neumann Boundary Conditions.- 5.3.2 Dirichlet Boundary Conditions.- 5.4 Fluctuation-Induced Phase Transitions.- 5.4.1 Nucleation of Current Filaments.- 5.4.2 Transverse Solitary Waves.- 6. Self-Sustained Oscillations and Chaos.- 6.1 Mechanisms for Oscillatory Behavior.- 6.1.1 Survey of Mechanisms.- 6.1.2 Transit-Time Oscillations.- 6.2 Limit-Cycle Oscillations.- 6.2.1 Circuit-Induced Oscillations.- 6.2.2 Impact-Ionization Induced Oscillations.- 6.2.3 Exciton-Induced Oscillations.- 6.3 Chaos.- 6.3.1 Routes to Chaos.- 6.3.2 Single-Carrier Effects.- 6.3.3 Impact-Ionization Assisted Driven Chaos.- 6.3.4 Impact-Ionization Induced Self-Generated Chaos.- 6.3.5 Two-Carrier Effects.- References.
- Volume
-
: pbk ISBN 9783642719295
Description
Semiconductors can exhibit electrical instabilities like current runaway, threshold switching, current filamentation, or oscillations, when they are driven far from thermodynamic equilibrium. This book presents a coherent theoretical des- cription of such cooperative phenomena induced by generation and recombination processes of charge carriers in semicon- ductors.
Table of Contents
1. Introduction.- 1.1 Instabilities in Semiconductors.- 1.1.1 Negative Differential Conductivity.- 1.1.2 Mechanisms for NDC.- 1.1.3 Semiconductor Transport.- 1.2 Phase Transition Analogies.- 1.2.1 Equilibrium and Nonequilibrium Phase Transitions.- 1.2.2 Semiconductors as Nonequilibrium Systems.- 1.2.3 Bifurcation Phenomena.- 2. Bistability of Homogeneous Steady States.- 2.1 One-Carrier Models.- 2.1.1 Second-Order Phase Transitions.- 2.1.2 First-Order Phase Transitions.- 2.1.3 General M-Level Mechanisms.- 2.1.4 Critical Behavior.- 2.1.5 Cyclotron-Resonance Induced Phase Transitions.- 2.2 Two-Carrier Models.- 2.2.1 Models with Band-Band Impact Ionization.- 2.2.2 Models with Band-Trap Impact Ionization.- 2.2.3 Dynamics of Threshold Switching Transitions.- 2.2.4 Auger Recombination Induced Tristability.- 2.3 Excitonic Models.- 2.3.1 Stimulated Exciton Creation.- 2.3.2 Bound-Exciton Recombination and Optical Bistability.- 3. Small Fluctuations from the Homogeneous Steady State.- 3.1 Linear Modes of One-Carrier Models.- 3.1.1 Linearized Transport Equations.- 3.1.2 Stability and Differential Conductivity.- 3.2 Filamentary Instability.- 3.2.1 The Spectrum.- 3.2.2 Bifurcation of Layered or Filamentary Stationary Structures.- 3.3 Domain Instability.- 3.4 Electromagnetic Modes.- 3.4.1 Maxwell's Equations in Media with NDC.- 3.4.2 Transverse Modes (k???).- 3.4.3 Longitudinal Modes (k???).- 3.4.4 Mixed Modes.- 3.5 Oscillatory Instability.- 3.5.1 Two-Level Models.- 3.5.2 Single-Level Models.- 4. Stationary Transverse Spatial Structures.- 4.1 Plane Current Layers.- 4.1.1 Phase Portraits.- 4.1.2 Equal-Areas Rule.- 4.1.3 Electron-Density Profiles.- 4.1.4 Current-Voltage Characteristics.- 4.2 Cylindrical Current Filaments.- 4.2.1 Electron-Density Profiles.- 4.2.2 Equal-Areas Rule.- 4.3 Influence of Boundaries.- 4.3.1 Lateral Boundary Conditions.- 4.3.2 Neumann Boundary Conditions.- 4.3.3 Dirichlet Boundary Conditions.- 4.4 Filamentation in Two-Carrier Models.- 4.4.1 Ambipolar Diffusion and Trapping.- 4.4.2 Equal-Areas Rules for Current Layers and Filaments.- 4.5 Multiple Filaments.- 5. Stability of Transverse Spatial Structures.- 5.1 Plane Current Layers.- 5.1.1 General Results.- 5.1.2 Unstable Modes of Depletion Layers.- 5.1.3 Stable Modes of the Kink Profile.- 5.2 Cylindrical Current Filaments.- 5.2.1 General Results.- 5.2.2 Unstable Mode.- 5.3 Finite Boundary Conditions.- 5.3.1 Neumann Boundary Conditions.- 5.3.2 Dirichlet Boundary Conditions.- 5.4 Fluctuation-Induced Phase Transitions.- 5.4.1 Nucleation of Current Filaments.- 5.4.2 Transverse Solitary Waves.- 6. Self-Sustained Oscillations and Chaos.- 6.1 Mechanisms for Oscillatory Behavior.- 6.1.1 Survey of Mechanisms.- 6.1.2 Transit-Time Oscillations.- 6.2 Limit-Cycle Oscillations.- 6.2.1 Circuit-Induced Oscillations.- 6.2.2 Impact-Ionization Induced Oscillations.- 6.2.3 Exciton-Induced Oscillations.- 6.3 Chaos.- 6.3.1 Routes to Chaos.- 6.3.2 Single-Carrier Effects.- 6.3.3 Impact-Ionization Assisted Driven Chaos.- 6.3.4 Impact-Ionization Induced Self-Generated Chaos.- 6.3.5 Two-Carrier Effects.- References.
by "Nielsen BookData"