Dynamics of gas-surface interaction : proceedings of the International School on Material Science and Technology, Erice, Italy, July 1-15, 1981
Bibliographic Information
Dynamics of gas-surface interaction : proceedings of the International School on Material Science and Technology, Erice, Italy, July 1-15, 1981
editors, G. Benedek and U. Valbusa
(Springer series in chemical physics, 21)
Springer, 1982
Available at / 33 libraries
Note
Includes bibliographical references and index
Description and Table of Contents
Table of Contents
I. Scattering of Atoms from Solid Surfaces.- Theory of Atom-Surface Scattering.- 1. Lecture I.- 1.1 Scattering from a Periodic Potential.- 1.2 Numerical Methods and Phase Shifts.- 1.3 Close Coupling Calculations.- 1.4 The Distorted Wave Born Approximation.- 2. Lecture II.- 2.1 Formal Scattering Theory.- 2.2 Partial Processes.- 3. Lecture III.- 3.1 Semiclassical Methods.- 3.2 Scattering from a Hard Corrugated Surface (HCS).- 3.3 Eikonal and Kirchoff Approximations.- 4. Lecture IV.- 4.1 Introduction.- 4.2 Kinematics.- 4.3 Resonant Scattering Formalism.- 4.4 Resonance Line Shapes.- References.- He Diffraction from Semiconductor Surfaces. Lecture I: Si(100).- 1. Introduction.- 2. Si (100): Disordered Dimer Array.- 2.1 Si(100) Periodicity.- 2.2 Diffraction Scans and a Qualitative Feature of the Si(100) Surface.- 2.3 Specular Intensities.- 3. Structural Models for Si(100).- References.- He Diffraction from Semiconductor Surfaces. Lecture II: CaAs(110): Calibration of the Atom-Diffraction Technique.- 1. Introduction.- 2. Diffracti on Scans.- 3. Specular Intensity Scans.- 4. Rigorous Calculation of Diffraction Intensities.- 5. The Origin of the He/GaAs Potential.- 6. Computation of Rarefied Charge Densities.- 7. Summary.- References.- He Diffraction from Semiconductor Surfaces. Lecture III: Si (111) 7x7.- 1. Introduction.- 2. Diffraction Scans.- 3. Specular Intensity Interference.- 4. A Model of the Si(111) 7x7.- 5. Summary.- References.- Helium Scattering from Clean and Adsorbate-Covered Metal Surfaces.- 1. Introduction.- 2. The He-Surface Interaction Potential and the Crystallographic Information Contained in the Corrugation Function.- 3. Data Analysis.- 3.1 Diffraction Geometry.- 3.2 The Hard Corrugated Wall Model.- 3.3 Calculation of Intensities for Given ?(R): The Direct Problem.- 3.4 Reconstruction of the Corrugation Function from Measured&&&Intensities: the Inverse Problem.- 3.5 Influences due to the Softness of the Potential.- 3.6 Influences due to the Thermal Motion of the Surface Atoms.- 4. Experimental Aspects.- 5. Examples.- 5.1 Metals.- 5.2 Adsorbate Structures.- References.- The Coherence Length in Molecular and Electron Beam Diffraction.- 1. Abstract.- 2. Introduction.- 3. The Formation of the Diffraction Pattern.- 3.1 The Simple-Minded Approach.- 3.2 The Rigorous Approach.- 4. Summary.- References.- Charge Density Waves Surface Deformation Studied by Helium Atom Diffraction.- 1. Introduction.- 2. Unreconstructed Structure of the Layered Compounds.- 3. Charge Density Waves Deformations.- References.- II. Characterization of Adsorbed Phases.- Phase Transitions in Surface Films.- 1. Introduction.- 2. Order-Disorder Transitions.- 2.1 Critical Exponents and Surface Symmetry.- 2.2 2D Gas-Solid Transition.- 2.3 2D Melting (Existence of a Self-Bound Liquid?).- 2.3.1 Mehtane/Graphite.- 2.3.2 Krypton/Graphite.- 3. Solid-State Transformation.- 3.1 Commensurate-Incommensurate (C-I) Transition.- 3.1.1 Kr/Graphite (0001).- 3.1.2 Xe/Cu(110).- 3.2 2D Polymorphism.- 3.3 Non Stoichiometric Surface Compounds.- 4. 2D Gas-Liquid Transition.- 4.1 Liquid-Gas Coexistence.- 4.2 Critical Index.- 5. Influence of Heterogeneities on Surface Phase Transitions.- 6. Conclusions.- References.- Universal Laws of Physical Adsorption.- 1. Introduction.- 2. Evidence for Universality.- 3. Analytical Forms of the Potential.- 4. Conclusion.- References.- The Dynamical Parameters of Desorbing Molecules.- 1. Abstract.- 2. Introduction.- 3. The Failure of the General Desorption Laws.- 4. The Associative Desorption of Permeating Atoms.- 5. Conclusions.- References.- Atomic Beam Diffraction as a Method for Studying Two-Dimensional Solids.- 1. Introduction.- 2. Atomic Diffraction.- 2.1 Surface Crystallography.- 2.2 Atom-Surface Interaction Potential.- 2.3 Inelastic Scattering.- 3. Atomic Diffraction from Adsorbates.- 4. Diffraction of H Atoms from a Xe Overlayer Adsorbed on the (0001) Surface of Graphite.- 5. Conclusions.- References.- Atom Scattering from Overlayers.- 1. Introduction.- 2. Experiments of Atom Scattering from Adsorbates.- 3. Theory of Atom Scatteri ng from Adsorbates.- 4. Inelastic Scattering.- References.- III. Spectroscopy of Surface Optical Excitations.- Surface Elementary Excitations.- 1. Introduction.- 2. Electrons at Metal Surfaces.- 3. Continuum Models of Bulk and Surface Elementary Excitatations.- 3.1 Radiative and Non-Radiative Modes.- 3.2 The Dispersion Relations.- 3.3 Matching Conditions in the Non-Retarded Limit.- 3.4 Surface Modes in a Crystal Slab.- 3.5 Quantization and the Hamiltonian Formalism.- 4. Microscopic Theory of Surface Electronic Excitations.- 4.1 Surface Plasmon Dispersion.- 4.2 Semiclassical Infinite Barrier Model (SCIBM).- 5. Optical Spectroscopy of Surface Excitations.- 5.1 Rough Surface and Gratings.- 5.2 Attenuated Total Reflection (ATR).- 6. Electron Energy Loss Spectroscopy of Surface Excitations.- 6.1 Introduction.- 6.2 Experimental Examples.- 6.3 Interaction of Electrons with Collective Surface Modes.- 6.4 Interaction of Electrons with Localized Vibrations.- 6.5 Solution of the Scattering Problem.- 6.6 Observation of Surface Optical Phonons and Surface Phonons.- 6.7 Observation of Adsorbed Molecule Vibrational Modes.- 7. Dynamical Screening-Image Potential.- References.- Surface-Enhanced Raman Scattering.- 1. Introduction.- 2. The Phenomenon of Surface Enhanced Raman Scattering, "Roughness" and Local Field Effects.- 3. Further Reading.- References.- Calculation of the Phonon Spectrum of the Ni(111) Surface Covered with Oxygen.- 1. Introduction.- 2. Dipole Coupling.- 3. Bulk Phonons.- 4. Surface Phonons.- 5. Interpretation of the EELS Experiment.- References.- IV. Surface Phonon Spectroscopy by Atom Scattering.- Phonon Interactions in Atom Scattering from Surfaces.- 1. Introduction.- 2. Review of Theoretical Studies of Surface Phonons.- 3. Kinematics of Inelastic Surface Scattering.- 4. Dynamical Theory of Inelastic Scattering.- 5. Inelastic Scattering Experiments.- 6. Role of Resonances in Phonon Interactions.- References.- Surface Phonons in Ionic Crystals.- 1. Introduction.- 2. Surface Elastic Waves.- 2.1 Theory.- 2.2 Isotropic Crystals.- 2.3 Anisotropic Cubic Crystals.- 3. Surface Polaritons.- 3.1 Introduction.- 3.2 Surface Phonon Polaritons.- 4. Surface Lattice Dynamics.- 4.1 Introduction.- 4.2 Dynamics of a Thin Slab.- 4.3 The Green's Function Method.- 4.3.1 The Free Surfaces as a Perturbation.- 4.3.2 The Semi-Infinite Lattice.- 4.4 Examples and Comparison with Experimental Data.- 4.4.1 The Energy-Loss Profile of Inelastic Atom Scattering.- References.- Inelastic Scattering of Neon from the (001) LiF Surface.- 1. Introduction.- 1.1 Experimental Apparatus.- 1.2 Measurements and Analysis.- 1.3 Multiphonon Scattering.- 1.4 Conclusion.- References.- Inelastic Scattering from Metal Surfaces.- 1. What is so Exciting About Metal Surfaces.- 2. Basic Differences Between Metal and Insulator Surfaces.- 3. Experimental Results.- 3.1 Light Probing Atoms: He on Cu.- 3.2 Heavy Probing Atoms: Ne on Ni.- 3.3 Adsorbate Layers.- 4. Conclusion.- References.- Bound State Resonance in the Inelastic Scattering of He-Graphite.- 1. Introduction.- 2. Experimental Observations.- 2.1 Phonon-Assisted Bound State Resonance.- 2.2 Specular Phonon Assisted Bound State Resonance.- 2.3 Double Bound State Resonance.- 3. Calculation of the Specular Phonon Assisted Resonance.- 4. Information on Surface Phonon Dispersion Relation.- 5. Conclusions.- References.- Index of Contributors.
by "Nielsen BookData"