Fluid sciences and materials science in space : a European perspective

書誌事項

Fluid sciences and materials science in space : a European perspective

H.U. Walter, editor

Springer-Verlag, c1987

  • : us
  • : gw

大学図書館所蔵 件 / 24

この図書・雑誌をさがす

注記

Includes index

内容説明・目次

内容説明

The peaceful use of space flight systems for research and technological devel- opments in the context of promoting European and international cooperation represents the essential motivation for the programmes of the European Space Agency (ESA). One of ESA's programmes is dedicated to microgravity research, which is now an established discipline in Europe, with a dedicated group of scientists participating. The Challenger disaster has resulted in a serious dis- continuity of flight opportunities in the next few years but the forthcoming International Space Station, new launchers and reentry vehicles are expected to provide ample opportunities for microgravity research in the long term. Meanwhile parabolic aircraft flights, sounding rockets as well as the delayed Shuttle-dependent missions, Spacelab D-2, the IML-missions and EURECA I, will be employed to keep microgravity experimenters reasonably busy in the interim period. To prepare the ground for these activities, both regarding research and experiment facilities, an in-depth analysis of the state of the art is an essential requirement at this time. Such an analysis is presented in this volume. It ad- dresses all of the topics that have been identified to be of relevance. Besides a presentation of the fundamental aspects justifying microgravity research, the results of experiments already performed are reviewed and recommendations for future activities are made. Close to fifty European scientists have cooper- ated in the preparation of this volume and their dedicated and concerted effort is greatly appreciated.

目次

  • I. The Environment of Earth-Orbiting Systems.- A. Introduction.- B. Low Gravity Simulation.- B.1 Simulation of Weightlessness.- B.2 Orbital Flight.- B.2.1 Spacecraft in Circular Orbit.- B.2.2 Actual Gravitational Environment Aboard a Spacecraft.- B.2.3 A Case Study: The Microgravity Environment of the Orbiter/Spacelab System.- B.3 Other Free-Fall Methods.- B.3.1 Sounding Rockets.- B.3.2 Research Aircraft.- B.3.3 Drop Tubes and Drop Towers.- C. Atmospheric Conditions, Radiation and High Energy Particles.- C.1 Introduction.- C.2 Radiation Environment.- C.3 Atmospheric Environment.- C.4 High Energy Particles.- D. Conclusions.- E. References.- I. Fluid Sciences.- Fluid Physics.- II. Fluid Statics and Capillarity.- A. Introduction.- B. Basic Physics.- B.1 Influence of Gravity.- B.2 Macroscopic and Microscopic Views of the Interface.- B.3 Thermodynamics of the Gibbs Model.- B.4 Capillary Equilibrium.- B.5 Capillary Stability.- B.6 Rotational Stability.- B.7 Critical Wetting.- B.8 Charged Interfaces.- C. Results of Previous Microgravity Experiments.- C.1 Static Equilibrium and Stability.- C.2 Rotation and Oscillation.- C.3 Critical Wetting.- C.4 Charged Interfaces.- D. Future Prospects.- D.1 Present Interests.- D.2 Topics to Be Addressed in the Future.- D.3 General Remarks.- F. References.- III. Fluid Dynamics.- A. Introduction.- B. Inertial, Internal and External Forces.- C. General Momentum Equation.- C.1 Perfect Fluids.- C.2 The Momentum Equation.- C.3 Navier-Stokes Equation.- C.4 Physical Meanings of Terms for Different Flows.- C.5 Influence of Gravity.- C.5.1 Hydrostatic Distribution of Pressure.- C.5.2 Mechanical Stability.- C.5.3 Stream Functions.- C.5.4 The Shape of a Surface.- C.5.5 Gravitational Waves in Perfect Fluids.- C.5.6 Particular Cases for Perfect Fluids.- C.5.7 Influence of Gravity on Viscous Fluids.- D. Similarity Laws.- E. Surface Forces and Hydrodynamical Instabilities.- E.1 Heat Transfer.- E.2 Laplace Law.- E.3 Influence of Gravity on the Shape of a Liquid Film.- E.4 Capillary Waves.- E.5 Capillary Gravitational Waves.- E.6 Rayleigh-Benard Instability.- E.7 Two-Component Rayleigh-Benard Convection.- E.8 Steady Cellular Marangoni-Benard Convection (Thermocapillary Flow).- E.9 Oscillatory Marangoni-Benard Convection with Interfacial Deformation.- E.10 Rayleigh-Taylor Instability for Pure Liquids.- E.10.1 Inviscid Fluids.- E.10.2 Immiscible, Inviscid, Uniform Fluids.- E.10.3 Exponentially Varying Density in an Inviscid Fluid.- E.10.4 Two Uniform Viscous Fluids Separated by a Horizontal Boundary.- E.10.5 Uniform Rotation.- E.11 The Kelvin-Helmholtz Instability.- E.11.1 Two Uniform Inviscible Fluids in Relative Motions.- E.11.2 Transition Layer with Continuous Variation of Velocity.- E.11.3 Continuous Density and Velocity in an Incompressible Fluid.- E.12 Mechano-Diffusional Instability.- E.12.1 Basic Equations.- E.12.2 Stability Criteria for Plane Interfaces.- E.12.3 Stability Criteria for Spherical Interfaces.- E.13 Mechano-Chemical Reactions.- E.13.1 Isothermal Surface Reaction.- E.13.2 Reaction in an Isothermal Layer.- F. Some Results of Fluid Dynamics Experiments Under Microgravity Conditions.- G. Conclusions.- H. Annex: Some Dimensionless Groups and Their Relevance of Fluid Dynamics in Space.- I. References.- Physical Chemistry.- IV. Physical Chemistry - Overview and Selected Experiments.- A. Introduction.- B. Elements of the Present Microgravity Research Programme.- B.1 Thermodynamics and Transport Properties.- B.2 Phase Transitions and Near-Critical Point Phenomena.- B.3 Wetting and Adsorption Phenomena, Nucleation and Ageing.- B.4 Combustion and Chemical Reactions.- C. Additional Perspectives.- C.1 Relaxation Phenomena.- C.2 Applied Electrochemistry and Process Engineering.- D. Conclusions and Outlook.- E. References.- V. Mass Transport by Diffusion.- A. Introduction.- B. Relevance of Microgravity.- B.1 Advantages.- B.1.1 Heterodiffusion.- B.1.2 Self-diffusion.- B.1.3 Thermotransport.- B.1.4 Electrotransport.- B.2 Problems.- B.2.1 Macro- and Microconvection.- B.2.2 Marangoni Convection.- B.2.3 Free Volumes.- B.2.4 Influence of Segregation.- B.2.5 Wall Effects.- B.2.6 Time-Temperature Boundary Conditions.- B.2.7 Geometrical Boundary Conditions.- C. Results of Experiments.- C. 1 Experimental Techniques.- C.2 Analytical Methods.- C.3 Main Results.- C.4 Diffusion Data.- D. Analysis of Prospects.- E. References.- VI. Wetting and Adsorption Phenomena.- A. Introduction.- B. Gravity Effects on Interfaces.- B.l Liquid-Vapour Interface.- B.2 Wetting and Contact Angles.- B.3 Wetting Transition.- B.4 Critical Adsorption.- C. Theoretical Background.- C.1 Landau Theory.- C.1.1 Interface Between Two Coexisting Phases.- C.1.2 Wetting and Wetting Transitions.- C.1.3 Scaling.- C.1.4 Critical End Point Behaviour.- C.2 Other Theories.- C.2.1 Mean Field Theory for Systems with Long Ranged Interactions.- C.2.2 Beyond Mean Field Theory.- D. Experimental Status.- D.1 Thickness of Wetting Layers.- D.2 Critical Adsorption.- E. Outlook.- F. References.- VII. Phase Transitions and Near-Critical Phenomena.- A. Introduction.- B. Fundamentals.- B.1 Thermodynamics of Phase Transitions.- B.2 Classical Description
  • Mean Field Theory.- B.3 Scaling Laws.- B.4 Fluctuations and Correlations.- B.5 Renormalization Group Approach.- B.6 Transport Properties.- B.7 Approach to Equilibrium.- B.8 Phase Separation Process, Nucleation and Spinodal Decomposition.- B.9 Adsorption and Wetting.- B.10 The ?-Point of Helium.- B.11 Electrolyte Solutions.- C. Why Microgravity?.- C.1 Influence of Compressibility.- C.2 Influence of Isochoric Expansion Coefficient.- C.3 The Phase Separation Process.- C.4 Wetting Layers.- C.5 Interface Stability and Capillary Waves.- D. Status of Experimental Investigations.- D.1 Specific Heat in a Liquid-Vapour Transition.- D.2 Phase Separation Process.- D.2.1 Phase Separation and Phase Mixing of Near-Critical SF6.- D.2.2 Density Distribution Near the Critical Point in a Microgravity Environment.- D.2.3 Phase Separation of a Critical Mixture of Isobutyric Acid and Water.- D.2.4 Phase Separation of Critical and Near-Critical Mixtures of Cyclohexane-methanol and of Their Deuterated Derivatives.- D.2.5 Phase Separation After Stirring in Aqueous Polymer Mixtures.- D.3 Aqueous Salt Solutions.- E. Prospectives.- E.1 Equilibrium Thermodynamic Properties.- E.2 Approach to Equilibrium (Pure Fluids).- E.3 Transport Properties.- E.4 Phase Separation Processes.- E.5 Interfacial Phenomena.- E.6 Electrolyte Solutions.- F. References.- VIII. Chemical Pattern Formation.- A. Description and Definition of the Phenomenon.- B. Theoretical Concepts.- B.1 Chemical Instabilities.- B.2 Reaction-Diffusion Systems.- B.3 Additional Hydrodynamical Fluxes and Gravity.- C. Experimental Evidence.- C.1 Chemical Waves.- C.2 Precipitation Patterns.- C.3 Influence of Convection.- C.3.1 Hydrodynamic Flow.- C.3.2 Interfacial Instabilities.- D. Applications.- D.1 Inanimate Nature.- D.2 Biology.- D.2.1 Polarization and Morphogenesis.- D.2.2 Control of Membrane Functions.- D.2.3 Rhythms.- D.2.4 Motions.- D.3 Crosscorrelations.- E. Avenues for Microgravity Experimentation.- F. References.- IX. Combustion.- A. Introduction.- B. Fundamental Considerations.- B.1 Combustion Processes.- B.2 Time Scales in Combusting Flows.- B.3 Characteristics of Combusting Flow Fields.- C. Experimental Limitations and Solutions.- C.1 Status of Knowledge of Combustion Phenomena.- C.2 Methods of Reducing Natural Convection.- C.2.1 Miniaturization.- C.2.2 Reduction of Density Differences.- C.2.3 Reduced Gravity.- D. Applications of Microgravity.- D.1 General Interest.- D.2 Droplet Combustion Under Microgravity.- D.3 Flame Spread Along Solid Surfaces.- E. Concluding Remarks.- F. References.- II. Materials Science.- Crystal Growth.- X. Crystal Growth from the Melt.- A. Introduction.- B. Terrestrial Technology and Its Gravity-Related Limitations.- B.1 Current Growth Techniques.- B.2 Chemical and Structural Imperfections.- B.2.1 Introduction.- B.2.2 Gravity-Induced Imperfections.- B.2.3 Non-Gravity-Induced Imperfections.- C. Fundamental Aspects.- C.1 Introduction.- C.2 Buoyancy-Driven Convection.- C.2.1 Steady Buoyancy-Driven Flows.- C.2.2 Transition to New Flows.- C.2.3 Time-Dependent Convection.- C.2.4 Effect of a Magnetic Field.- C.3 Marangoni Flows.- C.3.1 Introduction.- C.3.2 Flow in Floating Zones.- C.3.3 Marangoni-Buoyancy Instability in Microgravity.- C.4 Response of the Crystal/Melt Interface.- C.4.1 Generation of Solute Striatums.- C.4.2 Morphological-Convective Instabilities.- D. Potential of Microgravity.- D.1 Unique Characteristics of Microgravity.- D.1.1 Absence of Buoyancy-Driven Convection.- D.1.2 The Absence of Hydrostatic Pressure.- D.2 A New Research Environment: Fields of Interest.- D.2.1 Basic Research: Verification of Theoretical Models.- D.2.2 Accurate Measurements of Materials Parameters.- D.2.3 Investigation of Gravity-Masked Effects.- D.2.4 Development of Space-Relevant Growth Techniques.- D.2.5 Preparation of Research Samples.- E. Results of Space Experiments.- E.1 Introduction.- E.2 Reduction of the Number of Structural Defects.- E.2.1 Decreased Dislocation Densities.- E.2.2 Reduction in the Number of Twins and Grain Boundaries.- E.2.3 Improved Single Crystallinity.- E.3 Chemical Macro-homogeneity.- E.4 Chemical Micro-homogeneity.- E.5 Solute Segregation by (Time-Dependent) Marangoni Flows.- E.5.1 Persistence of Striations in Float-Zoned Silicon.- E.5.2 Suppression of Striations by Surface-Coating.- E.5.3 Float-Zoning of Germanium.- E.5.4 Striations in Wall-Free Solidified Indium Antimonide.- E.6 Experience with Containerless Crystallisation.- E.6.1 Seeded Solidification of Drops.- E.6.2 Float-Zone Crystallization.- F. Future Aspects.- F.1 Introduction.- F.2 Future Scientific Activities.- F.2.1 Materials.- F.2.2 Subjects for Basic Research.- F.2.3 Development of Novel Growth Techniques.- F.2.4 Growth of Samples for Earthbound Research and Technology.- F.3 Research Policy.- F.4 Equipment.- F.4.1 General.- F.4.2 Automatization of Crystal Growth Experiments.- G. References.- XI. Crystal Growth from the Vapour Phase.- A. Introduction.- B. Physical Vapour Transport (PVT), Theoretical Background.- B.1 Nucleation and Growth Kinetics.- B.1.1 Supersaturation.- B.1.2 Continuous Growth and Film Deposition.- B.1.3 Lateral Growth.- B.2 Mass Transport.- B.2.1 Diffusive Transport in Cylindrical Ampoules - Advective Flow.- B.2.2 Free Convection in Cylindrical Ampoules.- B.2.3 Interplay Between Surface Kinetics and Transport.- C. Experimental Investigation.- C.1 Mass Transport.- C.1.1 Introduction.- C.1.2 Partial Pressures of Impurities in Closed Ampoules.- C.2 Ground-Based Vapour Growth Studies: Model Substance ?-HgI2.- C.2.1 Growth Rates.- C.2.2 Growth Rate and Crystal Habit as a Function of Orientation.- C.3 Vapour Growth Experiments Performed in Space.- D. Potential Future Experiments Under Microgravity Conditions.- E. Conclusions and Recommendations.- F. References.- XII. Crystal Growth from Solutions.- A. Introduction.- B. Fundamentals - Convective Phenomena in Solution Growth.- B.1 Introduction.- B.1.1 Solid-Liquid Interface.- B.1.2 Hydrodynamics.- B.1.3 Transport Phenomena.- C. High Temperature Solution Growth.- C.1 Crystal Growth from Non-Metallic Solutions (Flux Growth).- C.1.1 Experimental Arrangements.- C.1.2 Characterization.- C.1.3 Conclusions.- C.2 Growth of Electronic Materials from Metallic Solutions.- C.2.1 Basic Considerations.- C.2.2 THM Growth of Binary III-IV Semiconductors in Space.- C.2.3 Growth of Binary and Ternary II-VI Compounds in Space.- C.2.4 Conclusions.- D. Low Temperature Solution Growth.- D.1 Introduction.- D.2 Low Solubility Materials.- D.2.1 Basic Considerations.- D.2.2 Space Experiments.- D.2.3 Discussion.- D.3 High Solubility Materials.- D.3.1 Basic Considerations.- D.3.2 Space Experiments.- D.3.3 Discussion.- D.4 Conclusions.- E. Conclusions.- E.1 Past Results.- E.2 Definition of Space Experiments.- E.3 Choice of Samples.- E.4 Future Aspects.- E.4.1 Short Range.- E.4.2 Medium and Long Range.- F. References.- XIII. Crystal Growth of Biological Materials.- A. Introduction.- B. Why Is It Important to Crystallize Biological Materials?.- B.1 Why Do We Want to Know a Biological Structure?.- B.2 X-ray Diffraction and Crystallization.- B.3 A Selection of Structural Results Obtained so Far Using Structural Analysis and Potential Applications.- B.4 Summary.- C. The Tools of Protein Crystallography.- C.1 Synchrotron Radiation.- C.2 Detectors.- C.3 Neutron Sources.- C.4 Computers.- C.5 Summary.- D. Protein Crystallization on Earth.- D.1 The Principle.- D.1.1 Decrease of the Protein Solubility.- D.1.2 Repulsive and Attractive Forces.- D.1.3 Summary of the Variable Factors in Protein Crystallization Experiments.- D.2 Practical Considerations.- E. Microgravity.- E.1 European Single Crystal Growth Experiments with Proteins Under Microgravity Conditions.- E.2 Single Crystal Growth Microgravity Experiments by NASA.- E.2.1 Advantages of Space Outlined for Protein Crystal Growth.- E.2.2 Protein Crystallization Techniques for Space Experiments.- E.2.3 Details of Hardware Design.- E.2.4 Results.- E.2.5 Summary.- F. Assessment of Crystal Quality.- G. Recommendations.- H. References.- Alloys, Composites and Glasses.- XIV. Metals and Alloys.- A. Introduction.- B. The Undercooled Melt and Nucleation.- B.1 General Considerations.- B.2 Fundamental Aspects.- B.3 Links to Applications.- C. Theory of Solidification.- C.1 Interface Conditions.- C.2 Heat and Solute Transport.- C.3 Morphological Stability.- C.4 Isolated Dendrites.- C.5 Array Growth (Cells and Dendrites).- C.5.1 Cellular Growth.- C.5.2 Dendrite Arrays.- C.6 Eutectic Growth.- C.6.1 Regular Structures.- C.6.2 Irregular Eutectics.- C.7 Ripening.- C.8 Particle Pushing or Engulfment.- D. Convective Effects During Solidification of Metals and Alloys.- D.1 Solidification in the Presence of Driving Forces for Convection Outside the Solutal Boundary Layer.- D.1.1 Thermal Convection in the Bulk.- D.1.2 Cellular Growth in Alloys of Low Concentration.- D.1.3 Eutectic Solidification.- D.1.4 Marangoni Convection During Solidification.- D.2 Solidification in the Presence of Driving Forces for Convection Inside the Solutal Boundary Layer.- D.2.1 Planar Front Solidification and Cellular Growth of Concentrated Alloys.- D.2.2 Dendritic Solidification.- E. Main Results of Solidification Experiments in Space.- E.1 Casting.- E.2 Directional Solidification.- E.2.1 Macrosegregation and Morphological Stability.- E.2.2 Dendritic Growth.- F. Application-Oriented Research.- F.1 Materials Performance Improvements.- F.1.1 Superconductivity.- F.1.2 Magnetic Properties.- F.1.3 Mechanical Hardening.- F.2 Future Application-Oriented Research.- F.2.1 Dispersions.- G. Quantitative Investigation of Solidification.- G.1 "GETS" Experiment.- G.2 The Mephisto Project.- H. Conclusions.- I. References.- XV. Systems with a Miscibility Gap in the Liquid State.- A. Introduction.- B. Fundamentals.- B.1 Thermodynamics.- B.1.1 Basic Considerations.- B.1.2 Empirical Relationships and Evaluation Possibilities.- B.2 Atomistic Theory.- B.2.1 Influence of the Difference of the Atomic Radii.- B.2.2 Application of the Model Concept Concerning the Influence of Atomic Radii Differences.- B.2.3 Miscibility Gaps in Systems with Negative ?H Values.- B.3 Various Types of Miscibility Gap Phase Diagrams.- B.4 Ternary Systems.- C. Kinetics of Phase Separation.- C.1 Nucleation.- C.2 Growth.- C.3 Collisions, Coagulation and Coalescence.- D. Experiments on Immiscibles.- D.1 Studies on Nucleation.- D.2 Investigations on Growth Processes.- D.3 Coalescence and Coagulation.- E. Future Perspectives.- E.1 Scientific Perspectives.- E.2 Materials for Applications.- F. References.- XVI. Composites.- A. Introduction.- A.1 Definition.- A.2 The Relevance of Microgravity to Research on Composites.- A.3 Applications.- B. In Situ Composites.- B.1 Eutectics.- B.1.1 Influence of Convection on the Microstructure of Unidirectionally Solidified Eutectic Alloys.- B.1.2 Results of Microgravity Experiments.- B.1.3 Conclusions.- B.2 Peritectic Solidification.- B.2.1 Experimental Results.- B.2.2 Conclusions.- B.3 Monotectics.- B.3.1 Experimental Results.- B.3.2 Conclusions.- C. Artificial Composites.- C.1 Particle and Fibre Composites.- C.1.1 Stability of Particle Dispersions.- C.1.2 Experimental Results.- C.1.3 Conclusions.- C.2 Materials with Controlled Density.- C.2.1 Principles of Foam Generation.- C.2.2 Experimental Results.- C.2.3 Conclusions.- D. Discussion and Recommendations.- D.1 General Remarks.- D.2 Basic Research Topics.- D.2.1 In Situ Composites.- D.2.2 Artificial Composites.- D.3 Practical Aspects for Microgravity Experimentation.- E. Conclusions and Outlook.- F. References.- XVII. Glasses.- A. Introduction.- B. Glass Formation.- B.1 Introduction.- B.1.2 Nucleation.- B.1.3 Crystal Growth.- B.1.4 Temperature-Time Transformation Diagrams.- C. Glass-Forming Systems.- C.1 Nonmetallic Systems.- C.2 Metallic Systems.- C.3 Microgravity Aspects.- C.3.1 Nucleation Studies and Formation of Metallic Glasses.- C.3.2 Preparation of Nonmetallic Glasses.- D. Experimental Facilities.- D.1 Required Facilities.- D.2 Available Facilities.- D.2.1 Conventional Systems.- D.2.2 Levitation Systems.- E. Review of Achievements to Date.- E.1 Metallic Systems.- E.1.1 Nucleation Studies on Earth.- E.1.2 Microgravity Experiments.- E.2 Nonmetallic Systems.- E.2.1 Ground-Based Investigations.- E.2.2 Flight Experiments.- F. Conclusions and Recommendations.- G. References.- Analysis of the Limitations of Microgravity and Applications.- XVIII. Influence of Residual Accelerations on Fluid Physics and Materials Science Experiments.- A. Introduction.- B. General Considerations on g-Tolerability.- B.1 Definition of Tolerable g-Levels.- B.2 Objectives of the g-Tolerability Analysis.- B.3 The Set of Relevant Equations.- B.4 Order of Magnitude Analysis (OMA).- B.5 Application of OMA to g-Level Tolerability Problems.- C. Review of Past Activities in Fluid Science.- C.1 Thermo-Fluid-Dynamic and Sedimentation Phenomena.- C.2 Liquid Specimen Response to g-Level Disturbances.- D. Analysis of Specific Problems.- D.1 Crystal Growth from the Melt.- D.1.1 Description of the Problem.- D.1.2 Fluid Dynamics Modelling: Steady-State Conditions.- D.1.3 Segregation Behaviour.- D.1.4 TFD Modelling in Non-Steady-State Conditions: g-Jitter.- D.1.5 Segregation Behaviour as a Result of g-Jitter.- D.2 Growth from Solutions.- D.2.1 Growth at Low Peclet Numbers.- D.2.2 Growth Anisotropy in a Gravity Field.- D.2.3 Solutal Instabilities.- D.3 Oscillations of Liquid Columns.- D.3.1 Stability and Breakage.- D.3.2 Resonance Frequencies.- D.3.3 Reduction of the Tolerable g-Levels by Resonant Modes.- D.4 Diffusion and Thermodiffusion Experiments.- D.4.1 Description of the Problem.- D.4.2 Self- and Interdiffusion.- D.4.3 Thermodiffusion.- E. Conclusions and Recommendations.- F. References.- XIX. Industrial Potential of Microgravity.- A. Introduction.- B. Present Status.- B.1 U.S.A.- B.2 U.S.S.R.- B.3 Japan.- B.4 Europe.- B.4.1 Germany.- B.4.2 France.- B.4.3 Other European Countries.- C. Potential of Materials Processing in Space.- C.1 Introduction.- C.2 Economic Considerations.- C.3 Glasses.- C.4 Crystal Growth from the Melt.- C.5 Crystal Growth from the Vapour Phase.- C.6 Crystallization of Inorganic Materials from Solutions.- C.7 Protein Crystallization.- C.8 Microgravity-Adapted Processes.- D. Discussion.- E. Recommendations for a European Policy.- F. References.- Index of Contributors.

「Nielsen BookData」 より

詳細情報

ページトップへ