Topics in dynamic bifurcation theory
著者
書誌事項
Topics in dynamic bifurcation theory
(Regional conference series in mathematics, no. 47)
Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, c1981
大学図書館所蔵 全46件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Expository lectures from the CBMS regional conference, held at the University of Texas at Arlington, June 16-20, 1980"--T.p. verso
Bibliography: p. [77]-84
内容説明・目次
内容説明
This set of lectures has two primary objectives. The first one is to present the general theory of first order bifurcation that occur for vector fields in finite dimensional space. Illustrations are given of higher order bifurcations. The second objective, and probably the most important one, is to set up a framework for the discussion of similar problems in infinite dimensions.Parabolic systems and retarded functional differential equations are considered as illustrations and motivations for the general theory. Readers familiar with ordinary differential equations and basic elements of nonlinear functional analysis will find that the material is accessible and the fundamental results in bifurcation theory are presented in a way to be relevant to direct application. Most of the expository material consists of a concise presentation of basic results and problems in structural stability. The most significant contribution of the book is the formulation of structural stability and bifurcation in infinite dimensions. Much research should come from this - indeed some have already picked up the ideas in their work.
目次
On the definition of bifurcation Structural stability and generic properties in $\mathbf R^n$ Stability and bifurcation at a zero eigenvalue Stability and bifurcation from a focus First order bifurcation in the plane Two dimensional periodic systems Higher order bifurcation near equilibrium A framework for infinite dimensions Bifurcation in infinite dimensions References.
「Nielsen BookData」 より