Optical properties of ions in solids

著者

書誌事項

Optical properties of ions in solids

edited by Baldassare Di Bartolo ; assistant editor, Dennis Pacheco

(NATO advanced study institutes series, ser. B . Physics ; v. 8)

Plenum Press, c1975

大学図書館所蔵 件 / 34

この図書・雑誌をさがす

注記

Includes bibliographical references and index

"Lectures presented at the 1974 NATO Advanced Study Institute on Optical Properties of Ions in Solids, held at Erice, Italy, June 6-21, 1974" -- t.p. verso

内容説明・目次

内容説明

These proceedings report the lectures and seminars presented at the NATO Advanced Study Institute on "Optical Properties of Ions in Solids," held at Erice, Italy, June 6-21, 1974. The Institute was the first activity of the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The Institute consisted of a series of lectures on optical properties of ions in solids that, starting at a fundamental level, finally reached the current level of research. The sequence of lectures and the organization of the material taught were in keeping with a didactical presentation. In essence the Institute had the two-fold purpose of organizing what was known on the subject, and updating the knowledge in the field. Fif'teen series of lectures for a total of 44 hours were given. Five one-hour seminars and five twenty-minute seminars were presented. A total of 57 participants came from 40 laboratories in the following countries: Belgium, Canada, France, Germany, Ireland, Israel, Italy, Netherlands; Polatid, Romania, Switzerland, the United Ki~gdom, and the United States. The secretaries of the Institute were: D. Pacheco for the scientific aspects and A. La Francesca for the administrative aspects of the meeting. These proceedings report the lectures, the one-hour seminars (abstracts only) and the twenty-minute- seminars (titles only). The proceedings report also the contributions sent by Prof. K. Rebane and Dr. L. A. Rebane who, unfortunately, were not able to come.

目次

  • Historical Survey of Studies of the Optical Properties of Ions in solids.- Abstract.- I. Introduction.- II. Early Investigations of Optical Transitions.- III. Quantum Mechanical Considerations.- IV. Crystal and Ligand Field Theory.- V. Energy Transfer.- VI. Ion Pairs.- VII. Multiphoton Transitions.- VIII. Concluding Remarks.- References.- Magnetic Ions in Solids.- Abstract.- I. Introduction.- II. Symmetry Concepts.- II.A Properties of a Group.- II.B Example.- II.C Classes.- II.D Representations.- II.E Characters.- II.F Group Theory and Quantum Mechanics.- III. Energy Levels of Atoms.- III. A Some Groups of Interest.- 1. Full Rotational Group.- 2. The Group C?h.- III.B Complete Set of Commuting Operators.- III.C Atomic States.- 1. The Hamiltonian.- 2. The Unperturbed Hamiltonian.- 3. The Electron-Electron Interaction.- 4. The Spin-Orbit Interaction.- 5. The Zeeman Interaction.- IV. Magnetic Ions in Crystals.- IV. A Magnetic Ions.- 1. Transition Metal Ions of the First Series (Iron Group).- 2. Transition Metal Ions of the Second Series (Palladium Group).- 3. Transition Metal Ions of the Third Series (Platinum Group).- 4. Rare Earth Ions (Group of the Lanthanides).- 5. Actinide Ions.- IV. B The Crystalline Field.- IV. C The Weak Field Scheme.- 1. The Hamiltonian of the Free Ion.- 2. The Crystalline Field Perturbation.- 3. Examples.- IV. D The Intermediate Field Scheme.- 1. The Hamiltonian of the Free Ion.- 2. The Crystalline Field Perturbation.- 3. The Spin-Orbit Interaction.- 4. Example.- IV. E The Strong Field Scheme.- 1. The Unperturbed Hamiltonian.- 2. The Crystalline Field Perturbation.- 3. The Electron-Electron Interaction.- 4. The Spin-Orbit Interaction.- 5. Example.- IV. F Kramers' Theorem.- V. Effect of Covalent Bonding.- V.A Why Covalent Bonding ?.- V.B Molecular Orbitals.- V.C Examples.- 1. N2 Molecule.- 2. HF Molecule.- 3. H2O Molecule.- 4. NH3 Molecule.- 5. CH4 Molecule
  • Hybridization.- V.D Octahedral Complexes.- V.E Charge Transfer Spectra.- 1. Ligand to Metal Transfer Spectra.- 2. Metal. Oxidation Spectra.- 3. Rydberg Spectra.- 4. Intraligand Spectra.- References.- Fundamentals of Radiative Transitions of Ions and of Ion Pairs in Solids.- Abstract.- I. Introduction.- II. Transitions Induced by Perturbations Periodic in Time.- III. Transitions Induced by the Electromagnetic Radiation Field.- IV. Spontaneous Radiative Transitions.- V. Applications of the Theory to Radiative Transitions of Ions in Solids.- References.- Absorption and Emission Spectra.- Abstract.- I. The One-Dimensional Configurational Coordinate Model.- I. A Introduction.- I.B The Emission and Absorption Peaks.- I.C The Shape of Emission and Absorption Spectra.- I.D A Study of Some Particular Cases.- 1. The Case of Linear Coupling.- 2. The Case of Quadratic Coupling.- I.E Simple Improvement of the Semi-Classical Approximation: H. Payen de la Garanderie's Law of the Rectilinear Diameter.- II. The Huang and Rhys Model.- II.A The Emission Spectrum.- II.B The Absorption Spectrum.- II.C A Remark.- II.D Shape and Asymmetry of Huang's and Rhys' and Pekarian Curves.- 1. The Moments.- 2. A More Detailed Study of the Pekarian Curve.- III. A Deeper Insight into the Shape of the Spectra.- III.A Weak Coupling and Strong Coupling.- III.B The Case of a Distribution of Phonons Interacting with the Emitting Center.- 1. Selection Rules.- 2. The Coupling Parameter S.- 3. The Moments of the Shape Function.- IV. A Study of Some Experimental Cases.- IV.A Large Band Spectra of II-VI Compounds.- 1. ZnS:Cu.- 2. ZnSe:Cu.- 3. CdS:Ag.- 4. ZnS:Ag, Cl.- 5. Self-Activated Materials.- IV. B ZnS:Mn.- IV.C The R-Lines of Ruby.- IV.D Edge Emissions in II-VI Compounds.- IV.E Stokes versus Anti-Stokes Emission.- References.- Quantum Theory of Lattice Vibrations.- Abstract.- I. Lattice Vibrations.- I.A Linear Diatomic Chain.- 1. Equations of Motion.- 2. One Dimensional Zone Scheme.- 3. Density of States.- I.B Three Dimensional Lattice. Classical Theory.- 1. Potential Energy.- 2. Equations of Motion.- 3. Eigenvalue Spectrum and Eigenvectors.- 4. Boundary Conditions and the Reciprocal Lattice.- 5. Brillouin Zones.- 6. Energy Surface Theorem.- I.C Three Dimensional Lattice. Quantum Theory.- 1. Introduction Coordinates.- 2. Commutation Relations.- 3. Energy Matrix.- 4. Eigenvalue Spectrum.- II. Thermodynamic Properties of Lattice Vibrations.- II.A Construction and Use of the Partition Function.- 1. Distribution Function.- 2. Summation of Terms.- 3. Internal Energy.- 4. Free Energy.- 5. Entropy.- 6. Specific Heat.- II. B Density of States.- 1. Enumeration of States.- 2. Critical Points, Small Wave Vector Limit. Debye Approximation.- 3. Critical Points. Minima.- 4. Critical Points. Maxima.- 5. Critical Points. Saddle Points.- 6. Conditions on Number and Types of Critical Points.- II.C Equation of State.- 1. Gruneisen Constant.- 2. Lattice Vibrational Equation of State.- 3. Relation between Gruneisen Constant and Compressibility.- II.D Effect of the Boundary Conditions on the Frequency Distribution.- References.- Theory of Vibronic Spectra.- Abstract.- I. Introduction.- II. Infrared Absorption.- II.A Characteristics of Infrared Absorption in Crystals.- II.B Quantum Mechanical Treatment of Infrared Processes.- III. Raman Scattering.- III.A Characteristics of Raman Scattering in Crystals.- III.B Theoretical Treatment of Raman Scattering.- IV. Neutron Scattering.- IV.A Characteristics of Neutron Scattering from Crystals.- IV.B Theory of Neutron Scattering.- V. Vibronic Spectra.- V.A Magnetic Ions in Host Lattices.- V.B Characteristics of Vibronic Spectra.- V.C Theory of Vibronic Transitions.- V.D Vibronic Selection Rules from Group-Theoretical Analysis.- V.E. Vibronic Theory: Alternate Approaches and Numerical Calculations.- VI. Example: Analysis of 2Eg ? 4A2g Sideband of MgO:V2+.- References.- Luminescence and Spectroscopy of Small Molecular Ions in Crystals.- Abstract.- I. Introduction.- II. General Description of the Spectra of Molecular Centres in Crystals.- II.A Structure of Luminescence and Absorption Spectra. Parameters of Potential Curves.- II.B Electron-Phonon Interaction. Structure of Phonon Wings.- II.C Electron-Phonon Interaction. Anharmonicity Effects. No-Phonon Lines.- II.D Radiationless Transitions and Vibrational Relaxation in Molecular Centres.- III. Rotation and Libration of the NO2- Ion in Potassium Halide Crystals.- III.A Hindered Rotation of the Impurity Molecule in Crystals.- III.B Rotational Structure of NO2- Vibronic Spectra.- III.C Polarization and Structure of Raman Scattering Lines of NO2-. The Role of Librations.- IV. Reorientation of S2- in KI.- References.- Some Problems of the Vibrational Structure of Optical Spectra of Impurities in Solids.- Abstract.- I. No-Phonon Lines and Phonon Wings (Sidebands).- I.A Vibronic Spectra of Absorption and Luminescence.- I.B Infrared Absorption Spectra.- I.C Light Scattering Spectra.- I.D Hot Luminescence Spectra.- I.E Shpolsky Spectra.- II. Inhomogeneous Broadening of Luminescence Spectra.- References.- Spectroscopy of Magnetic Insulators.- Abstract.- I. Introduction.- II. Interacting Ions.- II.A Two Interacting Electrons.- 1. Non-Overlapping Wavefunctions.- 2. Finite Overlap.- 3. Effect of the Spin.- 4. Biquadratic Terms.- II.B Many-Electron Problems.- II.C The Heisenberg Hamiltonian.- II.D Direct Exchange or Superexchange?.- II.E Transition Probabilities in Coupled Systems.- III. Crystalline Systems.- III.A Frenkel Excitons and Davydov Splitting.- III.B Effect of Vibration on the Davydov Splitting and Exciton Dispersion.- III.C Exciton Dispersion and Davydov Splitting in a Magnetic Crystal.- IV. Electronic Structure of Magnetic Crystals.- IV.A Spin Waves.- 1. The Case of a Chain, S = 1/2, Periodic Boundary Conditions.- 2. The Three-Dimensional Case.- 3. Antiferromagnetic Spin Waves.- IV.B Anisotropy Field and Exchange Field.- IV.C Weiss Theory of Ferromagnetism.- IV.D Antiferromagnets.- IV.E Effects of External Magnetic Fields.- IV.F Group Theory.- V. Examples of Spectra of Magnetic Crystals.- V.A MnF2.- V.B Cr2O3.- V.C FeCO3.- V.D Other Examples.- References.- Energy Transfer Phenomena.- Abstract.- I. Introduction.- II. Ion-Ion Interactions.- III. Statistical Treatment.- IV. Inhomogeneous Broadening.- References.- Stepwise Upconversion and Cooperative Phenomena in Fluorescent Systems.- Abstract.- I. Introduction.- II. Stepwise Upconversion.- III. Cooperative Transfer.- IV. Energy Transfer with Photon Cooperation.- References.- Relaxation and Energy Transfer.- Abstract.- I. Introduction.- II. Non-Radiative Relaxation.- II.A Weak Coupling Limit.- 1. Crystal Field Theory.- 2. Symmetry of Phonon Interaction Hamiltonian.- 3. Magnitude of Interaction Constants.- II.B Strong Coupling Limit.- 1. Reduction of Operator Matrix Elements.- 2. Numerical Estimates.- II.C The One-Phonon Processes.- II.D Multiphonon Processes.- 1. Two-Phonon Processes.- 2. Many-Phonon Processes.- III. Energy Transfer.- III.A Spatial Transfer (Resonant).- 1. Inter-Ion Coupling Mechanisms.- 2. Range Dependence. Transition Energies Less than the Debye Energy.- 3. Range Dependence. Transition Energies Greater than the Debye Energy.- 4. Inhomogeneous Broadening. Lack of Transport for Short-Range Interactions.- 5. Inhomogeneous Broadening. Critical Concentration for Energy Transfer.- 6. Inhomogeneous Broadening. Relation to Fluorescence Efficiency.- III.B Phonon-Assisted Energy Transfer.- 1. Form of Interaction.- 2. Dependence on Temperature.- 3. Dependence on Energy.- 4. Range Dependence.- 5. Effect of Strong Coupling.- IV. Summary and Future Prospects.- References.- Charge Transfer Spectra.- Abstract.- I. Introduction.- II. Elementary Aspects of Charge Transfer.- III. Relation between Optical and Chemical Charge Transfer.- IV. Theory of Charge Transfer Spectra.- IV.A Change of Energy with Atomic Number.- IV.B Application of Molecular Orbitals.- 1. Molecular Orbital Theory.- 2. The Case of the One Open Shell.- 3. More than One Open Shell.- V. Conclusions.- References.- The Role of the Jahn-Teller Effect in the Optical Spectra of Ions in Solids.- Abstract.- I. Introduction.- II. The Jahn-Teller Theorem.- III. A Model Illustrating the Jahn-Teller Effect.- IV. The Hamiltonian for a Magnetic Ion in a Crystal.- V. Configuration-Coordinate Diagrams.- V.A E Electronic States in Cubic Symmetry.- V.B T Electronic States Coupled to E Modes.- V.C T Electronic States Coupled to T Modes.- VI. Broad Band Optical Spectra.- VI. A Introduction.- VI.B Transitions from a Doublet.- VI.C Transitions to a Doublet.- VI.D Transitions Involving an Orbital Triplet Coupled to an E Mode.- VI.E Other Possibilities.- VII. Vibronic Structure in Energy Levels and Optical Spectra.- VII.A Vibronic Structure of E States.- VII.B Optical Evidence of E State Vibronic Structure.- VII.C Vibronic Structure of T States.- VII.D Optical Evidence of T State Vibronic Structure.- VIII. Concluding Remarks.- References.- Spectra of Associated Donor-Acceptor Pairs.- Abstract.- I. Introduction.- II. The Matrix Element for D-A Transition Probabilities.- III. Capture Cross-Sections.- IV. Shape of the Spectrum.- References.- Zero-Phonon and Phonon-Assisted Radiative Transitions of Donor-Acceptor Pairs in Luminescent Semiconductors.- Abstract.- I. Introduction.- II. Analysis of Experimental Spectra.- III. Application of the Theory.- References.- Present Trends in Luminescence Research.- Abstract.- I. Introduction.- II. Unusual Materials.- III. Recent Phenomena.- IV. Applied Research on Luminescence.- Long Seminars (Abstracts).- Application of Vibronic Spectroscopy - Strontium Titanate as an Example.- Radiationless Decay of Impurity Ions in Solids.- Luminescence from Yag: Cr3+, MgO:V2+ and MgO:Cr3+.- Spectroscopy of 5f-Systems: Actinides Versus Lanthanides.- Electronic and Vibrational Transitions of Lead Azide and Effects Thereon of Photodecomposition.- Short Seminars (Titles Only).- Contributors.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ