The measurement of biological shape and shape change
著者
書誌事項
The measurement of biological shape and shape change
(Lecture notes in biomathematics, 24)
Springer-Verlag, 1978
- us
- gw
大学図書館所蔵 件 / 全42件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. [174]-191
Includes index
内容説明・目次
目次
One. Introduction: On the Absence of Geometry from Morphometrics.- First Part. The Measurement of Biological Shape.- Two. Shapes and Measures of Shape.- A. Properties of the Euclidean Plane and Euclidean Space.- B. Outlines and Homologous Landmarks.- C. Definitions of Shape, Shape Change, Shape Measurement.- D. Shapes as Data.- Three. Critique of an Applied Field: Conventional Cephalometrics.- A. Landmarks, Curvature, and Growth.- B. Registration.- Four. New Statistical Methods for Shape.- A. Analysis of the Tangent Angle Function.- 1. History.- 2. Sampling from the tangent angle function.- 3. Conic replacement curves and their estimation Fit of a conic to a point - Geometric interpretation - Estimator for a circle - Estimation for the general conic - Computation of the extremum -Linear constraints.- 4. Conic splining Joint conic fitting under constraint -An example - Application - Analysis of parameters.- B. Extension to Three Dimensions: A Sketch.- C. Skeletons Definition - A multivariate statistical method - Bibliographic note.- Second Part. The Measurement of Shape Change Using Biorthogonal Grids.- Five. The Study of Shape Transformation after D'Arcy Thompson.- A. The Original Method.- 1. Thompson's own work.- 2. Later examples.- 3. Difficulties.- B. Analysis of Growth Gradients.- C. Simulations.- D. Other Morphometric Schemes Vector displacements - Multivariate morphometrics.- Six. The Method of Biorthogonal Grids.- A. Representation of Affine Transformations.- B. General Lines of Growth and Biorthogonal Grids.- C. Summarizing the Grids.- Technical Note 1. Existence and Form of Biorthogonal Grids.- Technical Note 2. Interpolation from Landmark Locations and Arcs The measure of roughness - The vector space and its associated functions - Interpolation from boundary values - Interpolation from boundary values and interior points - Note on computation.- Technical Note 3. Construction of Integral Curves.- Technical Note 4. On Homologous Points.- Seven. Examples of Biorthogonal Analysis.- A. Comparison of Square and Biorthogonal Grids: Thompson's Diodon Figure.- B. Phylogeny and Ontogeny of Primate Crania.- 1. Functional craniology and craniometrics.- 2. Data for this exercise.- 3. Two types of transformations.- 4. Comparative ontogeny of the apes and man.- Eight. Future Directions for Transformation Analysis.- A. Statistical Methods The symmetric tensor field - Concordance -Linear methods.- B. Computation Other kinds of information about homology -Three dimensions.- C. Likely Applications Computed tomography - Orthodontics - Developmental biology.- Nine. Envoi.- Literature Cited.
「Nielsen BookData」 より