Superconducting magnet systems

Author(s)

Bibliographic Information

Superconducting magnet systems

by H. Brechna

(Technische Physik in Einzeldarstellungen, Bd. 18)

Springer , J.F. Bergmann, 1973

  • : us
  • : gw

Available at  / 22 libraries

Search this Book/Journal

Note

Includes bibliographical references

Description and Table of Contents

Description

The renaissance of magnet technology started in the early 1950s with the establishment of high-energy accelerators. About a decade later in 1961, or fifty years after the discovery of superconductivity, high-field superconducting laboratory magnets became a reality. Conventional still the major beam-handling and experimen- electromagnets, which are tal devices used in laboratories, operate at zero efficiency. To generate high magnetic fields in a useful volume, considerable amounts of power are needed. Superconducting d. c. magnets do not require any power at all. It is somewhat depressing to note that, sixty years after the first superconductor was tested, the experimental d. c. superconducting mag- net is still the only large-scale equipment operated in laboratories. Al- though there has been considerable activity in the area of superconduc- tivity, superconductors are used on quite a modest scale in electronic and quantum devices, in medicine and biology, and in physical experi- ments where high magnetic fields are essential. It is only recently that Type II superconductors have been introduced in power engineering (power generation, storage and transport) to replace pulsed accelerator magnets; for fast and economical transportation vehicles (levitated trains) where superconductors may ultimately replace the wheel; to make new means of en~rgy generation economically feasible, such as in magneto- hydrodynamics and in fusion reactors; and for high-efficiency electric motors. High-field superconducting magnets are being proposed for de- salination of seawater, for magnetic separation in the mining industry, for cleaning polluted water, and for sewage treatment.

Table of Contents

1. Methods of Magnetic Field Generation.- 1.1 High Magnetic Field Laboratories.- 1.2 Conventional Continuous Duty Magnets with and without Iron.- 1.3 Pulsed Magnets.- 1.4 Cryogenic Magnets.- 1.5 Superconducting Coils.- References.- 2. Magnetic Field Calculations.- 2.1 Magnets without Ferromagnetic Yokes.- 2.1.1 Magnetic Fields due to Current Elements.- 2.1.2 Fields due to Filamentary Current Lines.- 2.1.3 Field Corrections.- 2.1.4 Applications.- 2.1.4.1 Circular Current Filament.- 2.1.4.2 Elliptical Conductor.- 2.1.4.3 Dipole Field.- 2.1.4.4 Quadrupole Field.- 2.1.5 Magnetic Field Calculation by Means of Current Sheets.- 2.1.6 Magnetic Field of Cylindrical Coils.- 2.1.6.1 Use of Spherical Harmonics, Axially-Symmetric Coils.- 2.1.7 Magnetic Field of Non-Cylindrical Coils.- 2.1.8 Fields Produced by Means of Distributed Parallel Conductors.- 2.1.8.1 Multipole Coils with Circular Aperture.- 2.1.9 Multipole Coils with Rectangular Aperture.- 2.2 Magnetic Fields due to Coils in Proximity to Ferromagnetic-Materials.- 2.2.1 Introduction.- 2.2.2 Direct Current Magnetization Curves.- 2.2.3 Difference Equations.- 2.2.4 The Grid System.- 2.2.5 Field Intensity in Rectangular Coordinates.- 2.2.6 Finite Difference Equations in Cylindrical Coordinates.- 2.2.7 Field Intensity in Cylindrical Coordinates.- 2.2.8 Field Problem as a Set of Simultaneous Equations.- 2.2.9 Boundaries with Different Permeabilities.- 2.2.10 Right-Angle Boundary with Different Permeabilities on Each Side.- 2.2.11 Curved Boundaries.- 2.2.12 General Boundary Condition.- 2.2.13 Solution of Difference Equations.- 2.2.14 Concept of Residuals.- 2.2.15 A Computational Method.- 2.2.16 The Iron-Air Interface.- 2.2.17 Examples and Results of Numerical Computations.- 2.2.17.1 Superconducting Dipole Magnets.- 2.2.17.2 Superconducting Quadrupole Magnet.- 2.2.17.3 Axially-Symmetric Magnets.- 2.2.17.4 General.- 2.3 Field Calculation of Iron-Bound Air-Core Magnets.- 2.3.1 Current Sheet.- 2.3.2 Coils of Finite Thickness.- 2.3.3 Special Cases.- 2.3.4 The Coil Ampere-Turns.- 2.3.5 The Magnetic Vector Potential.- 2.3.6 The Inner Radius of the Iron Shield.- 2.3.7 Iron Radial Thickness.- 2.3.8 Stored Energy.- 2.3.9 Magnetic Fields due to Axially-Symmetric Iron Distribution.- 2.4 Calculation of Forces.- 2.4.1 Forces due to Coil-Winding.- 2.4.2 Forces due to Thermal Contraction.- 2.4.3 Magnetomechanical Forces Fm.- 2.4.4 Magnetomechanical Forces due to Winding Pretension.- 2.4.5 Magnetomechanical Forces in Cylindrical Geometrics.- 2.4.6 Stresses due to Thermal Contraction.- 2.4.7 Forces for a Dipole Coil Configuration.- 2.4.8 Force Equations for Multipole Coils.- 2.4.9 Forces in Spherical Coils.- 2.4.10 Forces in Toroidal Coils.- 2.5 Calculation of Heating.- References.- 3. Phenomena and Theory of Superconductivity.- 3.1 Theory.- 3.1.1 Introduction.- 3.1.2 Free Electron Theory.- 3.1.3 Zero Field Properties of a BCS Superconductor.- 3.1.4 Superconductors in an Applied Field.- 3.1.5 Type II Superconductors.- 3.1.6 Summary of Free-Electron, BCS and GLAG Formulae.- 3.2 Critical Fields of Type II Superconductors.- 3.2.1 Introduction.- 3.2.2 Magnetostatics and Thermodynamics of Type I Superconductors.- 3.2.3 Intermediate State of Type I Superconductors.- 3.2.4 The Mixed State of Type II Superconductors.- 3.2.5 Exact Theories of the Mixed State.- 3.2.6 Paramagnetic and Impurity Effects on Hc2.- 3.2.7 Critical Fields of intermetallic Compounds.- 3.2.8 Surface Superconductivity.- 3.3 Critical Currents of Type II Superconductors.- 3.3.1 Introduction.- 3.3.2 Forces on Flux Lines.- 3.3.3 Flux Flow.- 3.3.4 Thermally Activated Flux Creep.- 3.3.4.1 Thermally Activated Flux Creep.- 3.3.4.2 Calculation of the Effective Density of Vortex Pinning Sites.- 3.3.4.3 Nature of Vortex Pinning Sites.- 3.3.5 Low Temperature Experimental Results on the Field and Defect Dependence of the Critical Current Density.- 3.3.5.1 High Field Materials.- 3.3.5.2 Low Field Materials.- 3.3.5.3 Other Low Temperature Effects.- 3.3.6 Kim Anderson Theory at Finite Temperatures.- 3.3.7 A.C. Effects.- 3.3.8 Conclusions.- References.- 4. Superconducting Alternating Current Magnets.- 4.1 Alternating Current Losses.- 4.1.1 Introduction.- 4.1.2 Flux Profiles.- 4.1.3 Thin Superconducting Tapes and Filaments.- 4.1.4 Finite Size Slabs and Cylindrical Conductors Located in a Transverse External Field.- 4.1.5 Methods of Calculating Hysteretic Losses due to Alternating Fields.- 4.1.6 Hysteretic Losses in Slabs.- 4.1.7 Application to Multifilamentary Conductors.- 4.1.8 Hysteretic Losses in Cylindrical Shaped Superconductors.- 4.1.9 Hysteretic Losses in Coils Using Hollow Superconducting Filaments.- 4.1.10 Losses in Composites.- 4.1.11 Eddy Current Losses in the Conductor Matrix.- 4.1.12 Self Field Losses.- 4.1.13 Contribution of External Fields.- 4.1.14 Discussion.- 4.1.15 Comparison between Self-Field and Hysteretic Losses.- 4.1.16 Modification of the Hysteretic Losses, if the Transport Current is not Zero.- 4.2 Additional Effects in Twisted Multifilamentary Conductors.- 4.2.1 Axial Diffusion of the Self Field.- 4.2.2 Solution of I (r, z, t).- 4.2.3 Extension of the Self Field Model in Twisted Multi-Filament Conductors.- 4.3 Eddy Current Losses in Metallic Parts.- 4.3.1 Iron Losses in the Flux Return Path.- 4.3.2 Eddy Current Losses in the Metallic Cryostat.- 4.4 Multifilamentary Conductors.- 4.4.1 Cables and Braids.- 4.5 Comparison of Loss-Calculation with Experiments.- 4.6 Methods of Loss Measurement.- 4.6.1 Calorimetric Method.- 4.6.2 Electric Methods.- 4.7 Magnetic and Thermal Instabilities.- 4.7.1 Introduction.- 4.7.2 Diffusion Equations.- 4.7.2.1 Magnetic Diffusivity.- 4.7.2.2 Thermal Diffusivity.- 4.7.3 Stability.- 4.7.3.1 Temperature Rise from Fluxjump.- 4.7.3.2 Adiabatic Stability.- 4.7.3.3 Dynamic Stability.- 4.7.3.4 Steady State Stability.- 4.8 A.C. Magnet Fabrication Techniques.- 4.8.1 Coil Fabrication.- 4.8.2 Electrical-Design.- 4.8.2.1 Current Leads.- 4.8.2.2 Superconductor to Lead Joints.- 4.8.3.1 Transient Voltages in Coils due to Quenches.- 4.9 Irradiation Effects in Superconducting Magnets.- 4.9.1 Introduction.- 4.9.2 Energy Loss by Collisions.- 4.9.3 Irradiation Effects on Type II Superconductors.- 4.9.4 Irradiation Effects on Normal Metals.- 4.9.5 Irradiation Effects on Magnet Insulations and Reinforcements.- 4.9.6 Irradiation Effects on Helium.- References.- 5. Cryogenics.- 5.1 General Properties of Cryogenic Fluids.- 5.1.1 Availability and Production.- 5.2 Low Temperature Processes.- 5.2.1 Handling Cryogenic Fluids.- 5.2.1.1 Safety Precautions.- 5.2.2 Transferring Cryogenic Fluids.- 5.2.3 Liquid Level Measurement.- 5.2.3.1 Introduction.- 5.2.3.2 Methods of Level Measurement.- 5.3 Liquefaction and Refrigeration.- 5.3.1 Basic Principles, Reversible Cycles.- 5.3.2 Efficiency of Real Cycles.- 5.3.3 Non-Isothermal Refrigeration.- 5.3.4 Practical Refrigerators.- 5.3.5 Liquefiers.- 5.3.6 Real Liquefiers.- 5.4 Handling and Storage of Cryogenic Fluids.- 5.5 Physical Properties of Cryogenic Fluids.- 5.5.1 Helium.- 5.5.2 Hydrogen.- 5.5.3 Nitrogen.- 5.6 Physical Properties of Solids.- 5.6.1 Introduction.- 5.6.2 Mechanical Properties of Solids.- 5.6.2.1 Stress-Creep Relation.- 5.6.2.2 Stress-Strain Relation.- 5.6.2.3 Fatigue.- 5.6.3 The Work of Fracture.- 5.6.4 Thermal and Transport Properties of Solids.- 5.7 Heat Losses.- 5.7.1 Heat Conduction.- 5.7.2 Convection.- 5.7.3 Radiation.- 5.7.4 Methods to Minimize Thermal Losses.- 5.7.5 Application.- References.- 6. Economic Consideration in the Design of Water-Cooled, Cryogenic and Superconducting Magnets.- 6.1 Introduction.- 6.2 Cost Comparison for Specific Magnet Systems.- 6.2.1 Solenoids and Split Coils.- 6.2.2 Water-Cooled Solenoids with Uniform Current Density Distribution.- 6.2.3 Cryogenic Magnets with Uniform Current Density Distribution.- 6.2.4 Superconducting Magnets.- 6.2.5 Operating Cost of Superconducting Coils.- 6.2.6 Long Solenoids.- 6.2.7 Magnets for Energy Storage.- 6.2.8 Beam Transport and Accelerator Magnets.- 6.3 Cost Comparison in General.- References.- 7. Examples of Superconducting Magnet Systems.- 7.1 The Argonne National Laboratory 3.7-m Hydrogen Bubble-Chamber Magnet.- 7.2 The CERN Liquid Hydrogen Bubble-Chamber Magnet.- 7.3 Composite Magnet System, the McGill and MIT Hybrid Magnets.- 7.4 The Oak-Ridge -IMP -Superconducting Coil System.- 7.5 The SLAC 7 T, 30-cm Bore, Helmholtz Magnet.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA03105596
  • ISBN
    • 0387061037
    • 3540061037
  • LCCN
    72096051
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Berlin,München
  • Pages/Volumes
    xi, 590 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top